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Abstract

The lottery ticket hypothesis states that smaller subnetworks within a larger
deep network can be trained in isolation to achieve accuracy similar to that of
original network, as long as they are initialized appropriately. However, whether
these subnetworks or winning tickets are transferable across datasets and optimizers
remains unclear. The paper "One ticket to win them all:generalizing lottery ticket
initializations across datasets and optimizers" empirically shows that these winning
tickets are transferable. We reproduce the results in the paper from scratch by
implementing all the experiments. Our results support the original paper’s claim of
the winning ticket initializations being transferable. While the paper is replicable,
we find that reproducing the paper requires access to large amount of computing
resources for generating the winning tickets. Hence we also open-source the winning
tickets we find, so others can avoid the compute-intensive procedure of generating
them.

1 Introduction

Prior works have shown that 90% of the parameters of a neural network can be elim-
inated without compromising accuracy [1, 2]. Eliminating unnecessary parameters by
techniques like pruning reduces the computation requirements and energy consumption
of neural networks thereby making inference more efficient. The procedure for pruning
networks involves training the entire neural network and eliminating the least important
weights after the training phase has been completed. However, if the number of param-
eters in a neural network can be reduced, why not train the pruned network itself and
make training phase more efficient?

Pruned networks were not trained from scratch as previous works [2, 1] mention that when
pruned networks are trained from scratch they achieve lower accuracy when compared to
a network which is pruned after training. However, the recently proposed lottery ticket
hypothesis states the following: "A randomly-initialized, dense neural network contains
a subnetwork that is initialized such that when trained in isolation, it can match the test
accuracy of the original network after training for at most the same number of iterations"
[3]. These subnetworks along with the appropriate initializations are referred to as the
winning tickets. If true, the lottery ticket hypothesis implies that pruned networks can
be trained from scratch to achieve accuracy commensurate to the accuracy of original
network as long as the pruned network is initialized appropriately.
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Unfortunately, finding these winning ticket initializations requires one to iteratively prune
the network which is a computationally expensive procedure. One can potentially avoid
this procedure if one can reuse the same winning ticket initialization across multiple
datasets and optimizers. However, the answer to the question of whether these winning
ticket initializations generalize to the spectrum of datasets and optimizers remains ob-
scure. The paper we reproduce, "One ticket to win them all: generalizing lottery ticket
initializations across datasets and optimizers" [4] provides empirical evidence that these
winning ticket initializations generalize across multiple datasets as well as optimizers1.

As a part of the NeurIPS Reproducibility Challenge’s Replication Track, we replicate
the work done by [4] and investigate if the winning ticket initializations are generalizable
across datasets and optimizers. The target questions of our work are as follows:

• Do winning ticket initializations generalize within same data distribution?

• Do winning ticket initializations generalize across datasets?

• Do winning ticket initializations generalize across optimizers?

In this report, Section 2 describes the techniques we used for our experiments and their
implementation. Section 3 describes the efforts needed to replicate the results in terms
of computing resources required, development time and contact with authors. Further,
in Section 4 we present and discuss our results. We open source the code we use for our
experiments2. Finally, as finding these winning tickets is computationally expensive, we
open-source the winning tickets we found for usage by the community3.

2 Methodology and Experimental Settings

We implement the code base using PyTorch [5]. We use the inbuilt model definitions,
optimizers, datasets of PyTorch for our experimentation.

2.1 Models
For all our experiments, we use one of the two network architectures: ResNet50 and a
modified VGG19.

In the case of the modified VGG19 architecture, we remove all the fully connected layers
from the network. Following the last convolutional layer, we add a global-average-pooling
layer. Finally, we add a linear classification layer from the global average pool to the num-
ber of output classes. We use the ReLU non-linearity and perform batch normalization
after each convolutional layer. For our experiments, we initialize all the convolutional
layers using Xavier normal initialization and the biases to 0. We set batch norm weights
and bias parameters to 1 and 0 respectively. We train all the VGG19 models for 160
epochs and anneal the learning rates by a factor of 10 at the 80th and the 120th epochs.

We use the standard ResNet50 architecture that was proposed in [6]. We use the Kaim-
ing normal initialization for convolutional layers, which is also the default initialization
for ResNets in PyTorch. We train all the ResNet models for 90 epochs. We anneal the
learning rates by a factor of 10 at the 50th, 65th and 80th epochs.

The initializations, number of epochs, learning rate annealing schedules are in accordance
to [4] to maintain consistency of experiments.

1Authors used anywhere in this paper refers to the authors of the paper that we reproduce [4]
2The code base can be found at github.com/varungohil/Generalizing-Lottery-Tickets
3The winning tickets can be found in this Google Drive folder (hyperlinked)
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2.2 Optimizers
We used two optimizers for our experiments - The Adam optimizer and Stochastic Gra-
dient Descent (SGD) optimizer. We use Adam with a learning rate of 0.0003 with betas
0.9 and 0.999 and a weight decay of 0.0001. We use SGD with a learning rate of 0.1, with
a momentum of 0.9 and a weight decay of 0.0001. We use hyperparameters provided by
authors to maintain consistency with the paper we are reproducing [4].

2.3 Datasets
We use 4 datasets for our experiments - CIFAR10 [7], CIFAR100 [7], SVHN [8] and
FashionMNIST [9]. These datasets are diverse in terms of grayscale vs. color images,
input size, number of output classes, and training set size. For all these datasets for data
augmentation we perform random horizontal flips and random crops of size 32 with a
padding of 4. We use the default train-test splits provided by PyTorch dataloaders in
our experiments. We use a batch size of 512 for all our experiments.

2.4 Pruning Methodology and Implementation
There are two widely used methods for pruning - one shot pruning and iterative prun-
ing. Suppose we want to prune p% of a network. In one shot pruning, we first train
the network, then prune p% of the weights and finally reset the weights to the original
initialization that the network had before training. In iterative pruning the network is
trained, pruned and reset every round for n rounds. As can be observed, at the end of
each round, p

1
n% of the weights that survived the previous round are pruned. In this

work we use iterative pruning for pruning the neural networks. We use iterative pruning
as prior work [3] shows that it finds winning tickets that match the accuracy of original
network at higher pruning fractions when compared to one shot pruning.

Further, for each iteration a neural network can be pruned either in a global manner
or in a local manner. When pruning in a global manner, the weights of all layers of
the network are pooled together and then a fraction of weights are removed from this
global pool. In local pruning, the same fraction of weights are removed in each layer for all
the layers. In our work we use global pruning as used in the paper we are reproducing [4].

In our implementation of pruning, we set the value of the parameters to be pruned to be
zero before each forward pass by multiplying the parameter tensor with a binary mask
of identical shape. This automatically ensures two things: (a) the forward pass is on the
pruned network and (b) the gradients are computed on the pruned network.

We perform iterative pruning for 30 pruning iterations and use a 20% pruning rate. For
our experiments we use magnitude-based pruning i.e. the weights with the magnitudes
in the lowest 20% of remaining non-zero weights are removed after each iteration.

2.5 Late Resetting
In the original paper on lottery ticket hypothesis [3], the authors reset the weights after
each pruning iteration to the original initialization that the network had before training.
They report that learning rate warm-up is necessary to find winning tickets on larger
models. However, a recent work [10], reports that re-initializing the weights to the
weights after the training iteration k, where k is typically much smaller than the total
training iterations, performs consistently better in producing winning tickets and also
removes the need for learning rate warm-up. We employ late resetting of 1 epoch in all
the experiments as used by the authors [4].
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2.6 Random Masks
Winning tickets, contain information about two key aspects of the subnetwork: the
structure of the sparse neural network as well as the initialization of the parameters. The
structure of the subnetwork is stored in form of a mask which is a binary vector that is
multiplied with the network’s weights, to set the pruned weights to zero. Prior works have
preserved the structure of the mask while randomly initializing the weights for random
tickets. The authors [4] empirically demonstrate that the structure of the subnetwork
contains significant information. Hence for the random ticket the authors apply a random
mask to the network and initialize the parameters randomly. For implementing the
random ticket baseline, we generate random masks by globally permuting the winning
masks as mentioned in [4].

2.7 Computing Resources
We run our experiments on three GPUs - Nvidia P100, Nvidia K80 and Nvidia GTX
1080. The Nvidia P100 and Nvidia K80 machines had a 16 core Intel processor and
15GB RAM, while the Nvidia GTX 1080 machine had a 32 core Intel processor with 256
GB of RAM.

3 Cost of Reproducibility

The authors of the original paper [4] did not release their code. We replicate the results
by implementing the all experiments from scratch. We did not experience significant dif-
ficulty in developing the code base we use for our experiments. We believe that a person
having experience with PyTorch can implement the code without major challenges. Fur-
ther, we also contacted the authors via email. We inquired about the data-augmentations
used while training the networks as they were not mentioned in the original paper. Fur-
ther we contacted them to understand the concept of random masks.

Replicating the results required a significant amount of computing resources. We ex-
perienced that the CodeOcean compute resources provided by organizers of NeurIPS
Reproducibility Challenge, were not sufficient for the experimentation and hence we per-
formed the experiments on Google Cloud. Further, finding winning tickets for larger
datasets is computationally expensive, with the authors using 16 GPUs [4]. As we did
not have access to such a large amount of computing resources, we only replicated the
results on smaller datasets like Cifar-10, Cifar-100, SVHN and FashionMNIST. We could
not conduct experiments for larger datasets like ImageNet (1.8 million images) [11] and
Places365 (8 million images) [12] as we were severely limited by compute capability and
the time allotted for the reproducibility challenge. Overall, we used approximately $500
worth of Google Cloud credits for our experimentation.

The process of generating winning tickets is time-consuming as well. Training a ResNet50
model for 90 epochs using Nvidia P100, the fastest GPU we used, takes approximately
33 minutes. Similarly, training the VGG19 model for 160 epochs using Nvidia P100 takes
approximately 43 minutes. For our experiments we trained a ResNet50 model 450 times
and a VGG19 model 540 times. All the experiments would take approximately 634 hours
(26 days) to run sequentially. To complete the experiments in time we scheduled multiple
experiments parallelly on Google Cloud.

We open-source our code base for reproducing the results of [4]. Along with our code
base, we also open-source the winning tickets we found during our experimentation. We
hope this will help the community avoid expensive and time-consuming computation, as
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these winning tickets can directly be used for inference and can be studied to improve
our understanding of lottery tickets.

4 Results and Discussion

The original paper reports results for 3 experiments, each concerning a target question we
mentioned in Section 1. For each experiment, we plot the test accuracy at convergence
as function of fraction of pruned weights. Owing to the compute and time constraints
mentioned in Section 3, we could only replicate the results with 1 random seed.

4.1 Transfer within same data distribution
With this experiment, we aim to investigate if the winning ticket initializations generalize
within the same data distribution. For this experiment, we divide the CIFAR-10 dataset
into 2 halves - CIFAR-10a and CIFAR-10b. Both these halves contain 25,000 training
images, having 2500 images of each class. We find the winning ticket initialization for
CIFAR-10a using SGD and verify if it generalizes to CIFAR-10b. As our baselines, we use
the CIFAR-10b winning ticket initialization with SGD and random tickets. We perform
this experiment for both, VGG19 and ResNet50 architectures.
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Figure 1. Transfer of winning ticket initializations within same data distribution

Our results are presented in Figure 1. The results show that winning tickets found on
CIFAR-10a generalize well to CIFAR-10b. We also see that while using ResNet50, for
low pruning fractions random ticket provides better accuracy than winning tickets found
using CIFAR10-a and CIFAR10-b. The same phenomena is reported in the original
paper [4]. Our results support the hypothesis presented in original paper that ResNet50
winning tickets are sensitive to smaller datasets at low pruning fractions.

4.2 Transfer across optimizers
With this experiment, we aim to investigate if the winning ticket initializations gener-
alize across optimizers. For our experiments, we use the modified VGG19 architecture
discussed in Section 2.1. We find the winning tickets for CIFAR-10 dataset using both
Adam and SGD optimizers and analyze the effect on accuracy when the ticket generated
using one optimizer is further trained using another optimizer. Our results show that
even after transfering tickets from SGD to Adam and vice-versa the accuracy of the tick-
ets was comparable to when the tickets were trained using the same optimizer without
any transfer. This supports the claim made in the original paper that VGG19 winning
tickets are optimizer-independent.
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Figure 2. Transfer of winning ticket initializations across optimizers
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Figure 3. Transfer of winning ticket initializations across datasets with ResNet50

4.3 Transfer across datasets
With this experiment, we aim to investigate if the winning ticket initializations general-
ize across datasets. For our experiments, we used ResNet50 and the modified VGG19
architectures. We train the models on Cifar-10, Cifar-100, FashionMNIST and SVHN
datasets with SGD optimizer.

Our results also reveal the key trends which the authors discuss in the original paper.
Firstly, we see in Figures 3 and 4 that individual winning tickets show accuracy similar
to that of winning ticket generated on the target dataset. This supports the author’s
hypothesis that the inductive bias provided by the winning tickets is dataset-independent.

Second, we observe that winning tickets generated from more complex datasets (with
higher number of classes) generalize better than those generated on relatively simpler
datasets. Winning tickets generated on CIFAR-100 transfer better than those generated
by those on CIFAR-10. This effect can be clearly seen in Figure 3 for ResNet50 architec-
ture, while for VGG19 architecture both winning tickets show similar accuracy.
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Third, while we observe that the winning rates transferred similarly for both ResNet50
and VGG19 architectures, the ResNet50 architecture tickets showed a sharper degrada-
tion in accuracy at higher pruning fractions compared to VGG19 architecture tickets.
This can be observed by comparing Figure 3 with Figure 4.

We do not report the results of VGG19 winning tickets on FashionMNIST as we exhausted
our Google Cloud Credits before completion of the experiment.
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Figure 4. Transfer of winning ticket initializations across datasets with VGG19

4.4 Discussion
From our results, we make the following observations:

• Winning ticket initializations transfer across multiple datasets and optimizers. This
suggests that the winning tickets provide an inductive bias while training pruned
models and are not overfitting a particular optimizer or dataset.

• Winning tickets over more complex datasets(having more number of classes) gen-
eralize better to less complex datasets.

• Different neural network architectures show different sensitivity to pruning frac-
tions, with ResNet50 showing sharper accuracy degradation at higher pruning frac-
tions than VGG19.

Overall, these observations motivate further work in area of neural network initializations.
Further, as generating lottery tickets using iterative pruning is computationally expensive
and time-consuming, more efficient methods for generating winning tickets are needed.

5 Conclusion

The original paper [4] investigates the generalizability of winning ticket initializations
across datasets and optimizers. We replicate the experiments of the original paper from
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scratch. Our results support the major claims of the original paper and empirically show
that the winning ticket initializations can be transferred across datasets and optimizers.
We appreciate the authors’ ability to explain their experiments and observations in a
lucid and replicable manner. While the results are replicable, we find that process of
reproducing the results is extremely compute-intensive. Hence along with our code base,
we also open-source the winning tickets we find during our experiments.
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