
Performance Optimization Opportunities in the Android Software Stack
Varun Gohila,1, Nisarg Ujjainkarb,1, Joycee Mekieb and Manu Awasthia
aAshoka University, India
bIndian Institute of Technology Gandhinagar, India

ART ICLE INFO
Keywords:
CPU utilization
Android smartphone
workload characterization

ABSTRACT
The smartphone hardware and software ecosystems have evolved very rapidly. Multiple innovations
in the system software, including OS, languages, and runtimes have been made in the last decade.
Although, performance characterization of microarchitecture has been done, there is little analysis
available for application performance bottlenecks of the system software stack, especially for contem-
porary applications on mobile operating systems.

In this work, we perform system utilization analysis from a software perspective, thereby
supplementing the hardware perspective offered by prior work. We focus our analysis on Android
powered smartphones, running newer versions of Android. Using 11 representative apps and regions
of interest within them, we carry out performance analysis of the entire Android software stack to
identify system performance bottlenecks.

We observe that for the majority of apps, the most time-consuming system level thread is a frame
rendering thread. However, more surprisingly, our results indicate that all apps spend a significant
amount of time doing Inter Process Communication (IPC), hinting that the Android IPC stack is a
ripe target for performance optimization via software development and a potential target for hardware
acceleration.

1. Introduction
Smartphones have become an integral part of our daily

lives. People depend on smartphones for many tasks related
to business, finance, entertainment, and social interactions.
Currently, there are more than 2 billion mobile devices in
use worldwide (Reddi, Yoon and Knies, 2018). The Ericsson
Mobility Report 2019 states that there are 6.1 billion mobile
broadband subscriptions globally and the number of Long-
Term-Evolution (LTE) subscriptions have grown to 3.9 bil-
lion (Ericsson Mobility Report Q2 Update August 2019).
This widespread adoption of mobile devices can be largely
attributed to increasing device affordability, which has been
made possible due to numerous hardware and software inno-
vations. This includes the open-source nature of the Android
Operating System (Reddi et al., 2018), which has allowed
smartphone vendors to customize the software stack for their
hardware. As a result, Android has quickly gained a majority
market share for smartphones (Smartphone Market Share -
OS).

Smartphones are very interesting from a system design
perspective since they need to provide a number of function-
alities that require general purpose as well as special pur-
pose compute. As a result, smartphone SoCs have evolved
rapidly to become complex ecosystems incorporating many
specialized IP blocks, including DSPs and GPUs in addition
to general purpose CPUs (Reddi et al., 2018). The number
and diversity of architectures of such units has also increased
over time to accommodate the evolving needs of applica-
tions.

Many recent efforts have been made to understand the
performance bottlenecks and utilization characteristics of
smartphone devices (Halpern, Zhu and Reddi, 2016; White-
house, Wu, Song, John, Gerstlauer and John, 2019; Gao,

1Both authors contributed equally

Gutierrez, Dreslinski, Mudge, Flautner and Blake, 2014;
Gao, Gutierrez, Rajan, Dreslinski, Mudge and Wu, 2015).
However, most prior studies focus on bottom-up understand-
ing of smartphone utilization from an architectural design
perspective. For example, Whitehouse et al. (2019) present
the distribution of computation amongst ARM’s big and
little cores. They also study clock frequencies at which one
can perform computations on a mobile device in an energy
efficient manner. These studies are important since mobile
SoC architectures evolve rapidly and characterization of
new architectures is important to understand and alleviate
performance bottlenecks of new architectures.

The software stack for smartphones has been evolving
even faster than hardware. Android has been following a
yearly release cycle in recent years, with each iteration
adding more functionality and optimizations (Can Android
”O” de-fragment Android?). As a result, every release causes
major changes to the software stack which potentially lead to
performance bottlenecks. Knowledge of these bottlenecks is
not only useful for optimizing the next generation apps but
also for making decisions about future architectural innova-
tions. Despite its importance, there is a lack of understanding
of software bottlenecks in both the apps as well as the system
software. Understanding and enumerating performance bot-
tlenecks of the software stack remains an important endeavor
that has not been taken up in earnest by the systems research
community. However, recent announcements from technol-
ogy companies (Burke, 2021) indicate that there exists a
large room for performance improvement in the Android
software stack.

We believe that a top-down analysis of application char-
acteristics will augment our understanding ofmobile devices
by supplementing prior work. Hence, we study the software
subsystem of Android based smartphones by tracing the

V. Gohil, N. Ujjainkar, J. Mekie, M. Awasthi Page 1 of 7



Performance Optimization Opportunities in the Android Software Stack

entire system (application + operating system) stack at run-
time, capturing performance bottlenecks. Prior works (Gao
et al., 2015; Halpern et al., 2016; Gao et al., 2014) have
measured CPU utilization using Thread Level Parallelism
(TLP) as a metric to identify the amount of parallelism
the hardware can exploit. While TLP is a useful metric
to decide the number of cores to be placed on the chip,
it does not provide information on the computation being
performed by the cores and the functionality supported by
the computations. Knowledge of the functionality for which
the computation is being performed is necessary to optimize
software and to design novel hardware accelerators to be
used alongside the CPU.Generally, in Android smartphones,
a particular thread or a group of threads is responsible for
a particular functionality. By identifying the threads having
high execution times, one can identify the functionality
that consumes higher CPU time and should be optimized.
Hence, we focus this paper on trying to answer the following
questions.

• Which are the most time-consuming threads per app?
• Are there any common threads across a cross section

of apps that end up consuming the most time?
• Which threads take up the most time during app

launch?
We believe that this type of analysis will help the process
of developing high performance software but and helps
identify potential hardware acceleration opportunities for
mobile devices. Since many previous studies have pointed
out the importance of app launch times for user engagement
and experience (Falaki, Lymberopoulos, Mahajan, Govin-
dan, Kandula and Estrin), we also pay special attention to
app launches as a region of interest. Overall, the major
contributions of this work are as follows:

• We identify and perform system-level tracing of
eleven popular mobile applications on actual hard-
ware, running Pie version of Android (Android 9),
which helps us analyze time consumed by application
and OS threads.

• To better represent performance information, we
group threads into bins based on their functionalities.
This helps us increase interpretablity of results and
analyze the time consumed per functionality.

• We identify that for majority of applications, the most
time consuming thread is a system-managed thread
named RenderThread or another thread involved in
frame rendering.

• Using thread bins, we identify that although the most
time-consuming thread is almost always a thread re-
lated to frame rendering, a larger portion of execution
time is consumed by the group of threads responsible
for Inter Process Communication (IPC).This insight
makes inter process communication a potential target
for software optimization and hardware acceleration.

2. Methodology
2.1. Applications Traced

We choose eleven applications for our study, each of
which represents a common use case of a smartphone. For
example, we include Google Chrome as a browsing app,
Youtube as video-streaming app, WhatsApp as a messaging
app, and Gmail as a mailing app. Most of the selected apps
come pre-installed in the majority of Android smartphones.
We select the remaining apps based on their popularity
which we measure using their position on Google Play
Store’s Top Charts. The selected apps were at the top of the
Top Charts when we performed our study .

Prior work (Reddi et al., 2018) suggests that one should
divide the applications into regions-of-interest (ROI) to gain
deeper insight into the applications. A region-of-interest
(ROI) is a smaller portion of the application’s execution
which performs a particular task. For example, Google
Chrome has multiple regions-of-interest like performing a
search, switching a tab, and scrolling. Each of these ROIs
deals with a specific functionality of Google Chrome. The
reason for dividing the applications into ROIs is that these
individual ROIs can directly influence user-experience and
studying them independently of each other reduces the com-
plexity of analysis that needs to be performed. We provide
a comprehensive list of all applications we trace and their
ROIs in Table 1. Apart from the ROIs mentioned in Table 1,
we also trace the app launches for all apps.
2.2. Tools and Setup

For system-level (app + operating system) tracing, we
use the Systrace tool. Systrace is a tool shipped with Android
Studio and is primarily used for analyzing the performance
of an Android device. It is a wrapper around Atrace and
Ftrace. Atrace performs user space tracing while ftrace
traces the Linux kernel. The traces capture not only the
threads spawned by the app, but also background threads
being executed by the Android operating system. From the
traces obtained using Systrace, we find the time for which
each thread executes on the processor core.

To trace the ROIs, we start Systrace tracing and perform
the task related to the ROI. We immediately stop Systrace
tracing when the task of the ROI ends. We perform tracing
for each region of interest of each app at least five times.

We perform our experiments on Nokia 6.1 Plus smart-
phone. It runs the stock Android Pie (Android 9) operating
system. Further details about the smartphone are presented
in Table 2.
2.3. Binning Threads

The Android operating system and the apps spawn a
large number of threads. Since Systrace performs system
level tracing the generated traces have information for a large
number of threads. This leads to the resulting plot being
cluttered and difficult to interpret. Hence, to reduce clutter
and improve interpretability, we group threads working for
a common functionality into a single bin. We identify two
major bins which aid our analysis. They are:

V. Gohil, N. Ujjainkar, J. Mekie, M. Awasthi Page 2 of 7



Performance Optimization Opportunities in the Android Software Stack

Table 1
Applications traced and their Region of Interest

Category Application Regions of Interest (ROI)

PDF Viewer Adobe Acrobat Read PDF
Camera Camera Take a picture, Record a video
Game Candy Crush Play one level of the game

Social Network Facebook Scroll through the feed
Mailing app Gmail Send mail

Virtual Assistant Google Assistant Perform a query
Browsing app Google Chrome Search, Scroll through a page
Location app Google Maps Search a location, Zoom into a location

Audio Streaming Spotify Play a song in background, Play a song in foreground
Messaging app WhatsApp Send a message
Video Streaming YouTube Play a video

Apart from the regions of interest mentioned above, we also trace the launch of each of the apps.

Table 2
Smartphone Details

Technical Specifications

Device Model Nokia 6.1 Plus
Operating System Android Pie

Architecture ARM 64-bit
CPU Qualcomm Snapdragon 636

Cpu Cores 8
GPU Adreno (TM) 509
RAM 6 GB

Resolution 1080 x 2280
Display PPI 431

• Frame Rendering Bin (FR Bin)
• Inter-Process Communication Bin (IPC Bin)
Figure 1 shows the effect of thread binning. The pie chart

on the top in Figure 1 shows the execution time distribution
across individual threads for Google Chrome’s scrolling
ROI. After thread binning, the pie chart on top is transformed
to the one on the bottom. The latter shows execution time
distribution among selected bins and the remaining threads.
Observing the bottom pie-chart, we can easily infer that the
major portion of execution time is spent on frame rendering.
We were able to create two classes of thread bins based
on the functionality of individual threads. While binning
threads, we ensured that threads were mapped to correct bins
and that no thread was mapped to more than one bin.

Frame Rendering Bin : The Frame Rendering (FR) bin
is a group of all threads which are responsible for rendering
a frame on the mobile device’s screen. Table 3 provides a list
of threads within this bin. The major threads within this bin
are RenderThread, SurfaceFlinger and UiThread.

Inter Process Communication Bin : The Inter Process
Communication (IPC) bin is a group of all threads that
are executed to share information between processes. Table
3 provides a comprehensive list of all threads within this
bin. The major threads within the IPC bin are Binder and
HwBinder.

O
n

 B
in

n
in

g

Figure 1: Effect of Binning. Results for Google Chrome’s
scrolling ROI

3. Results and Observations
In this section, we discuss the answers to the questions

that we initially set out to answer in Section 1.
3.1. What are the most time-consuming

threads/bins per app?
Table 4 shows the most time consuming threads for each

region of interest for all eleven applications. We observe that
for most ROIs across applications, RenderThread is the most

V. Gohil, N. Ujjainkar, J. Mekie, M. Awasthi Page 3 of 7



Performance Optimization Opportunities in the Android Software Stack

Table 3
List of Threads within Bins

Frame Rendering Bin

RenderThread
surfaceflinger
UiThread
Compositor
CrGpuMain

CrRendererMain
android.display

mdss_fb0
DispSync

android.anim

Above list is not exhaustive

Inter Process Communication Bin

Binder
HwBinder

Chrome_IOThread
Chrome_ChildIOT

time-consuming thread. RenderThread is a system-managed
thread that is primarily responsible for offloading rendering
work to GPU to reduce the burden on UiThread (Marletti,
2017). By doing so it ensures the animations are smooth
even when the UiThread is delayed, which is essential to
maintain Quality-of-Service (QoS) for the user (Marletti,
2017). RenderThread is the most time-consuming thread in
ROIs like scrolling in Facebook and Chrome, messaging
using WhatsApp and Gmail, recording a video, or playing
a song in foreground on Spotify. All these ROIs involve
frequent modifications to the user display which justify most
time being consumed by RenderThread.

For the game Candy Crush, GLThread is the most time-
consuming thread. GLThread is also a rendering thread
and is responsible for performing OpenGL graphics ren-
dering operations (GLSurfaceView, Android Developers).
Similarly, for Google Maps’ “Zoom into a location”
ROI, GLViewThreadImp is the most time consuming thread.
GLViewThreadImp is responsible for managing Views, which
are basic building blocks of user-interface components, of
the OpenGL graphics library(GLView, Tizen Docs; View,
Android Developers). For Google Chrome Search ROI, we
observe that CrRendererMain is the most time-consuming
thread. CrRendererMain is the renderer thread for a webpage.
As per Chromium’s documentation, CrRendererMain runs
the javascript, html and css code which is displayed on
the screen (Understanding about:tracing results, Chromium
Projects). Overall, the most time-consuming threads for
these ROIs are involved in rendering the frame on user
display.

For YouTube’s “Play a Video” ROI we observe that
ExoPlayerImplIn is the most time-consuming thread. This
thread runs ExoPlayer that is an alternative media player for
Android (Exoplayer, Android Developers; Exoplayer Dev).

For Camera’s “Take a Picture” ROI, PostProcessingImag

thread is the highest time-consumer. From the thread’s
name, we hypothesize that this thread might be involved
in an image’s post-processing which involves tasks like
setting the exposure, white balance, and applying selected
filters. Unfortunately, we do not find any documentation on
om.adobe.reade and AndroidOut_1D threads and hence cannot
comment on their functionality.

Overall, for 7 out of 15ROIs concerning the eleven appli-
cations involved in our study, RenderThread is the most time-
consuming thread. Further, the highest time-consuming
threads in 10 of 15 ROIs are working on the appropriate
rendering of the frame. One should also note that the execu-
tion time of RenderThread is not contiguous. Execution times
of multiple instances of RenderThread are added together to
obtain the total execution time. We find that each individual
instance of RenderThread is short-lived, on average it takes
0.73 ms to execute, and there exists thousands (1000-2000)
of such instances within each region of interest.

The above results may lead one to conclude that frame
rendering is the major time consumer for the applications
since the most time consuming thread for majority of appli-
cations is related to frame-rendering. However, we find that
this is not the case when we analyze the results for thread
bins. Table 4 shows that the most time consuming bin is
the Inter Process Communication (IPC) bin. The IPC bin
is the highest time consumer for 10 out of 15 ROIs across
the applications. This indicates that even though the major
time-consuming thread is related to frame rendering, as a
whole, threads used to communicate between processes are
the larger time-consumer than threads involved in frame ren-
dering. This observation indicates that inter process commu-
nicationmight be a bigger bottleneck for mobile applications
than frame rendering.
3.2. What are the time-consuming threads which

are common across apps?
We isolate the common time-consuming threads across

applications. We believe optimizing these threads would
result in higher performance benefits across applications.
We observe the following time-consuming threads to be
common across apps:

RenderThread: It is the most time consuming thread for 7
out of 15 ROIs under consideration and it is one of the top
three most time consuming threads for 11 out of 15 ROIs.
It offloads the rendering tasks to GPU from the UiThread, to
maintain the smoothness of animations by avoiding frame
drops (Marletti, 2017).

surfaceflinger: It is the dominant time-consuming
thread after RenderThread within the Frame Rendering bin.
It is one of the top three most time consuming threads for
5 out of the 15 ROIs. The surfaceflinger thread takes in
multiple items from various graphics buffers and composes
them into a single buffer which is then sent to the user dis-
play (SurfaceFlinger and WindowManager, Android Open
Source Project).

V. Gohil, N. Ujjainkar, J. Mekie, M. Awasthi Page 4 of 7



Performance Optimization Opportunities in the Android Software Stack

Table 4
Most time-consuming thread and bin per ROI. Numbers within parenthesis indicate percentage execution time

Application Region of Interest Most time consuming
thread

Most time consuming
bin

Adobe Read PDF om.adobe.reade (13.6%) FR (26.7%)
Camera Take a picture PostProcessingImag (14.5%) IPC (30.3%)
Camera Record Video RenderThread (11.0%) IPC (22.1%)

Candy Crush Play 1 level GLThread (45.2%) FR (54.2%)
Facebook Scroll RenderThread (17.2%) IPC (23.1%)
Gmail Send Mail RenderThread (17.3%) IPC (29.8%)

Google Assistant Query RenderThread (11.2%) IPC (25.4%)
Google Chrome Scroll RenderThread (19.4%) FR (43.4%)
Google Chrome Search CrRendererMain (13.4%) IPC (33.8%)
Google Maps Search Location Jit thread pool (11.6%) IPC (26.4%)
Google Maps Zoom into Location GlViewThreadImp (17.1%) FR (26.6%)

Spotify
Play Music in
Background AndroidOut_1D (6.2%) IPC (20.6%)

Spotify
Play Music in
Foreground RenderThread (27.4%) FR (39.2%)

Whatsapp Send Message RenderThread (19.4%) IPC (35.8%)
YouTube Play Video ExoPlayerImplIn (8.8%) IPC (38.6%)

Table 5
Most time-consuming thread and bins on app launch. Numbers within parenthesis indicate the percentage of execution time
occupied by the thread/bin.

Application Most time consuming thread Most time consuming bin
Adobe om.adobe.reade (12.6%) FR (23.5%)
Camera RenderThread (14.9%) IPC (35.2%)

Candy Crush GLThread (44.6%) FR (57.9%)
Facebook Jit thread pool (11.6%) IPC (12.6%)
Gmail Jit thread pool (10.2%) IPC (32.1%)

Google Assistant RenderThread (11.6%) IPC (39.7%)
Google Chrome RenderThread (11.6%) IPC (36.6%)
Google Maps Jit thread pool (14.0%) IPC (23.2%)

Spotify m.spotify.musi (13.9%) FR (18.0%)
Whatsapp RenderThread (19.4%) IPC (36.0%)
YouTube RenderThread (12.5%) IPC (25.1%)

Binder: The Binder threads are a major time consumer
for the Inter Process Communication bin. They are used
for communication within application processes and within
framework and application processes (Using Binder IPC,
Android Open Source Project). The framework processes
are managed by the Android framework and are device-
independent.

HwBinder: Similar to Binder threads, HwBinder threads are
also a major time consumer for the Inter Process Communi-
cation bin. They are used for communication between frame-
work and vendor processes (Using Binder IPC, Android
Open Source Project). The vendor processes are processes
spawned by the code that the vendors add to Android frame-
work and are generally device-dependent.
3.3. What are the time-consuming threads during

an app launch?
App launches are crucial regions of interest in the con-

text of smartphones. One might think that reducing app

launch time results in fewer benefits than reducing the app’s
running time. Although this statement is true and intuitive,
app launches are important because of the usage pattern
of smartphones. Many users have a large number of short-
lived sessions on their smartphones. These short sessions
last for less than 10 seconds (Falaki et al.). During these short
sessions, a long app launch time significantly degrades user
experience, which is the reasonwhy several efforts have been
made to optimize app launch time. For example, Android
preserves an apps memory even after it is closed, so the time
taken by an app launch in the future can be reduced (Manage
your app’s memory, Android Developers).

We trace the app launches of each of the apps listed in
Table 1. Table 5 shows the most time-consuming thread and
bin during the launch of the applications. We observe that
RenderThread consumes a large percentage of execution time
for the majority of the applications. During an app launch,
RenderThread is the most time-consuming thread for 5 out of
the 11 apps, while it is in the top 2 most time-consuming

V. Gohil, N. Ujjainkar, J. Mekie, M. Awasthi Page 5 of 7



Performance Optimization Opportunities in the Android Software Stack

threads for 9 out of the 11 apps. This is expected since when
a new application is launched, new views corresponding to
the launched application need to be rendered on the screen.

Similar to other ROIs, the Inter Process Communication
bin is the highest time consumer during an app launch.
This indicates that optimizing Inter process communication
would also optimize app launches which would directly
improve Quality of Service (QoS).

4. Related Work
Several prior publications have focused on evaluating

performance and energy of smartphones by characteriz-
ing the hardware. For example, Gao et al. (2014, 2015)
demonstrated thatmobile applications had lowThread-Level
Parallelism (TLP) leading to under utilization of allocated
cores. A recent work by Whitehouse et al. (2019) stud-
ied the core utilization in smartphone architectures which
have both big and little cores. They report that standalone
applications rarely utilize all big cores during execution,
however during application launches or updates all big cores
are utilized to meet latency targets and avoid degradation in
user experience. Most of these works primarily try to answer
the question, "For what percentage of execution time is the
core being utilized?". While answering the above question
is crucial to identify performance inefficiencies, it does not
provide insights into the system software stack that may
help alleviate these bottlenecks. Our work supplements the
prior work by identifying the functionalities (IPC and Ren-
derThread) which have the highest execution time, which on
optimization would lead to significant performance benefits.

There have been some research that takes a software-first
approach for performance analysis of smartphone applica-
tions. Liu, Xu and Cheung (2014) use static code analysis
to identify frequently occurring performance bug patterns
in applications. Further, Gao, Dong, Huang, Bu, Chen, Xia
and Liu (2017) develop a tool that can automatically detect
performance bottlenecks on Android smartphones. However
given the nature of the Android ecosystem and the frequent
major release cycles require constant performance bottle-
neck analysis of the system software stack as well. Our work
complements such works which perform a software-focused
performance analysis. Instead of using any form of static
analysis, we identify the time consuming threads of smart-
phone applications by actually running the applications on a
real-world smartphone and provide targets for performance
optimization.

5. Limitations and Future Work
Our current study is limited to Android Version 9. Be-

cause of the quick moving nature of the Android ecosystem,
owing to yearly release cycles, new versions of Android had
been released while we were undertaking this study.

In addition, there is a lack of performance analysis
tools for the Android ecosystem, unlike x86 / x64, where a
large number of open source, well maintained performance
analysis tools exist, this is not the case for Android on

ARM. Lack of performance analysis tools severely hampers
the types of analyses that can be carried out. The analysis
done in this paper was carried out using Systrace, which is
supported for Android version 9. However, more recent An-
droid versions provide a tool called Perfetto for system-level
tracing. Further, Perfetto on Android 9 requires the system
tracing service to be turned on, which was not possible due
to the fact that we performed our experiments on stock an-
droid(Quickstart: Record traces on Android). These factors
compelled us to limit out study to Android 9. However, we
believe a study similar to this work across Android versions
could potentially reveal important performance optimiza-
tion trends. We also believe future work would be a more
comprehensive study by using more smartphone models and
different Android versions on each model.

The scope of this work is limited to answering the
question “Which functionality or subsystem of the Android
system stack takes up highest portion of execution time?".
Although extremely important, this work does not reveal
what part within the subsystem needs to be optimized and
what kind of optimizations would be beneficial. For exam-
ple, our work indicates that the IPC bin consumes higher
portion of execution time but it does not point out which
exact components of the IPC subsystem should be optimized
to reduce this time. As we have alluded to before, this is
primarily due to the of lack of tools which can be used
for such analysis. Tools like Systrace do not provide such
information.

The presented analysis is limited to an Android smart-
phone. We could not perform similar analysis on smart-
phones with other operating systems because there do
not exist any open-source tools that may act as alterna-
tives/equivalents of Systrace for those operating systems.

Finally, the work focuses on Regions of Interest (ROIs)
for analyzing the execution time breakdown. The authors
have tried to select the most relevant ROIs for each appli-
cation, which is similar to studies done in the past, which
are based on the most common user behavioral patterns,
and whose performance determined user engagement(Reddi
et al., 2018; Falaki et al.). However, we acknowledge that
the set of ROIs for each application is not necessarily the
most representative nor is it necessarily exhaustive. Future
work will focus on identifying a much more representative
and exhaustive set of regions-of-interest for the application.

6. Conclusion
In this work, we performed a system level performance

bottlenecks analysis for an Android smartphone for eleven
popular applications. Our results demonstrate that for all
applications, the highest time consuming thread is either
RenderThread or another thread related to frame rendering.
Further, on grouping threads into bins based on their func-
tionality, we find that the the highest time consuming func-
tionality is Inter Process Communication. We find similar
distribution in time consumption for both app executions and

V. Gohil, N. Ujjainkar, J. Mekie, M. Awasthi Page 6 of 7



Performance Optimization Opportunities in the Android Software Stack

app launches. Our results identify that software optimiza-
tion and hardware acceleration should target Inter Process
Communication to maximize performance and improve user
experience.

References
Adobe Acrobat Reader: PDF Viewer, Editor & Creator - Apps on Google

Play, . URL: https://play.google.com/store/apps/details?id=com.

adobe.reader&hl=en.
atrace/atrace.c - platform/system/extras - Git at Google, . URL:

https://android.googlesource.com/platform/system/extras/+/

jb-mr1-dev-plus-aosp/atrace/atrace.c.
Can android ”o” de-fragment android ?, a. URL: https://www.

counterpointresearch.com/can-android-o-de-fragment-android/.
Candy Crush Saga – Apps on Google Play, . URL: https://play.google.

com/store/apps/details?id=com.king.candycrushsaga&hl=en{_}IN.
ExoPlayer, a. URL: https://developer.android.com/guide/topics/media/

exoplayer.
ExoPlayer, b. URL: https://exoplayer.dev/.
Facebook, . URL: https://www.facebook.com/.
Ftrace, . URL: https://www.kernel.org/doc/Documentation/trace/ftrace.

txt.
GLSurfaceView, . URL: https://developer.android.com/reference/

android/opengl/GLSurfaceView.
Glview | tizen docs, . URL: https://docs.tizen.org/application/native/

guides/ui/efl/mobile/component-glview/.
Gmail, . URL: https://www.google.com/gmail/.
Google Assistant | Your own personal Google, . URL: https://assistant.

google.com/intl/en{_}in/.
Google Chrome - The New Chrome & Most Secure Web Browser, . URL:

https://www.google.com/chrome/.
Google Maps, . URL: https://www.google.com/maps.
Google play, . URL: https://play.google.com/store.
IDC - SmartphoneMarket Share - OS, b. URL: https://www.idc.com/promo/

smartphone-market-share.
Manage your app’s memory | Android Developers, c. URL: https://

developer.android.com/topic/performance/memory.
Music for everyone - Spotify, . URL: https://www.spotify.com/in/.
Nokia 6.1 Plus, . URL: https://www.nokia.com/phones/e{_}in/

nokia-6-plus.
Overview of system tracing, . URL: https://developer.android.com/

studio/profile/systrace.
Perfetto : System profiling, app tracing and trace analysis, a. URL: https:

//perfetto.dev/.
Quickstart: Record traces on android, b. URL: https://perfetto.dev/docs/

quickstart/android-tracing.
SurfaceFlinger and WindowManager, . URL: https://source.android.com/

devices/graphics/surfaceflinger-windowmanager.
Understanding about:tracing results - The Chromium Projects,

. URL: https://www.chromium.org/developers/how-tos/

trace-event-profiling-tool/trace-event-reading.
Using Binder IPC | Android Open Source Project, . URL: https://source.

android.com/devices/architecture/hidl/binder-ipc.
View, . URL: https://developer.android.com/reference/android/view/

View.
WhatsApp, . URL: https://www.whatsapp.com/.
YouTube, . URL: https://www.youtube.com/.
Ericsson mobility report q2 update august 2019, 2019. URL:

https://www.ericsson.com/4912aa/assets/local/mobility-report/

documents/2019/ericsson-mobility-report-q2-2019-update.pdf.
Burke, D., 2021. What’s new in android 12 beta.

URL: https://android-developers.googleblog.com/2021/05/

whats-new-in-android-12-beta.html.
Falaki, H., Lymberopoulos, D., Mahajan, R., Govindan, R., Kandula, S.,

Estrin, D., . Diversity in Smartphone Usage , 16.
Gao, C., Gutierrez, A., Dreslinski, R.G., Mudge, T., Flautner, K., Blake, G.,

2014. A study of Thread Level Parallelism on mobile devices, in: 2014

IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), pp. 126–127. doi:10.1109/ISPASS.2014.6844468.

Gao, C., Gutierrez, A., Rajan, M., Dreslinski, R.G., Mudge, T., Wu, C.,
2015. A study of mobile device utilization, in: 2015 IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software
(ISPASS), pp. 225–234. doi:10.1109/ISPASS.2015.7095808.

Gao, Y., Dong, W., Huang, H., Bu, J., Chen, C., Xia, M., Liu, X., 2017.
Whom to blame? automatic diagnosis of performance bottlenecks on
smartphones. IEEE Transactions on Mobile Computing 16, 1773–1785.

Halpern, M., Zhu, Y., Reddi, V.J., 2016. Mobile CPU’s rise to power:
Quantifying the impact of generational mobile CPU design trends on
performance, energy, and user satisfaction, in: 2016 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pp.
64–76. doi:10.1109/HPCA.2016.7446054.

Liu, Y., Xu, C., Cheung, S.C., 2014. Characterizing and detecting perfor-
mance bugs for smartphone applications, in: Proceedings of the 36th
international conference on software engineering, pp. 1013–1024.

Marletti, E., 2017. Understanding the RenderThread. URL: https://medium.
com/@workingkills/understanding-the-renderthread-4dc17bcaf979.

Reddi, V.J., Yoon, H., Knies, A., 2018. Two Billion Devices and Counting,
pp. 6–21.

Whitehouse, J., Wu, Q., Song, S., John, E., Gerstlauer, A., John, L.K.,
2019. A Study of Core Utilization and Residency in Heterogeneous
Smart Phone Architectures, in: Proceedings of the 2019 ACM/SPEC
International Conference on Performance Engineering.

V. Gohil, N. Ujjainkar, J. Mekie, M. Awasthi Page 7 of 7

https://play.google.com/store/apps/details?id=com.adobe.reader&hl=en
https://play.google.com/store/apps/details?id=com.adobe.reader&hl=en
https://android.googlesource.com/platform/system/extras/+/jb-mr1-dev-plus-aosp/atrace/atrace.c
https://android.googlesource.com/platform/system/extras/+/jb-mr1-dev-plus-aosp/atrace/atrace.c
https://www.counterpointresearch.com/can-android-o-de-fragment-android/
https://www.counterpointresearch.com/can-android-o-de-fragment-android/
https://play.google.com/store/apps/details?id=com.king.candycrushsaga&hl=en{_}IN
https://play.google.com/store/apps/details?id=com.king.candycrushsaga&hl=en{_}IN
https://developer.android.com/guide/topics/media/exoplayer
https://developer.android.com/guide/topics/media/exoplayer
https://exoplayer.dev/
https://www.facebook.com/
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://developer.android.com/reference/android/opengl/GLSurfaceView
https://developer.android.com/reference/android/opengl/GLSurfaceView
https://docs.tizen.org/application/native/guides/ui/efl/mobile/component-glview/
https://docs.tizen.org/application/native/guides/ui/efl/mobile/component-glview/
https://www.google.com/gmail/
https://assistant.google.com/intl/en{_}in/
https://assistant.google.com/intl/en{_}in/
https://www.google.com/chrome/
https://www.google.com/maps
https://play.google.com/store
https://www.idc.com/promo/smartphone-market-share
https://www.idc.com/promo/smartphone-market-share
https://developer.android.com/topic/performance/memory
https://developer.android.com/topic/performance/memory
https://www.spotify.com/in/
https://www.nokia.com/phones/e{_}in/nokia-6-plus
https://www.nokia.com/phones/e{_}in/nokia-6-plus
https://developer.android.com/studio/profile/systrace
https://developer.android.com/studio/profile/systrace
https://perfetto.dev/
https://perfetto.dev/
https://perfetto.dev/docs/quickstart/android-tracing
https://perfetto.dev/docs/quickstart/android-tracing
https://source.android.com/devices/graphics/surfaceflinger-windowmanager
https://source.android.com/devices/graphics/surfaceflinger-windowmanager
https://www.chromium.org/developers/how-tos/trace-event-profiling-tool/trace-event-reading
https://www.chromium.org/developers/how-tos/trace-event-profiling-tool/trace-event-reading
https://source.android.com/devices/architecture/hidl/binder-ipc
https://source.android.com/devices/architecture/hidl/binder-ipc
https://developer.android.com/reference/android/view/View
https://developer.android.com/reference/android/view/View
https://www.whatsapp.com/
https://www.youtube.com/
https://www.ericsson.com/4912aa/assets/local/mobility-report/documents/2019/ericsson-mobility-report-q2-2019-update.pdf
https://www.ericsson.com/4912aa/assets/local/mobility-report/documents/2019/ericsson-mobility-report-q2-2019-update.pdf
https://android-developers.googleblog.com/2021/05/whats-new-in-android-12-beta.html
https://android-developers.googleblog.com/2021/05/whats-new-in-android-12-beta.html
http://dx.doi.org/10.1109/ISPASS.2014.6844468
http://dx.doi.org/10.1109/ISPASS.2015.7095808
http://dx.doi.org/10.1109/HPCA.2016.7446054
https://medium.com/@workingkills/understanding-the-renderthread-4dc17bcaf979
https://medium.com/@workingkills/understanding-the-renderthread-4dc17bcaf979

