2104.04763v1 [cs. AR] 10 Apr 2021

arxXiv

Fixed-Posit: A Floating-Point Representation for
Error-Resilient Applications

Varun Gohil*, Sumit Walia*, Joycee Mekie, Manu Awasthi

Abstract—Today, almost all computer systems use IEEE-754
floating point to represent real numbers. Recently, posit was pro-
posed as an alternative to IEEE-754 floating point as it has better
accuracy and a larger dynamic range. The configurable nature of
posit, with varying number of regime and exponent bits, has acted
as a deterrent to its adoption. To overcome this shortcoming, we
propose fixed-posit representation where the number of regime
and exponent bits are fixed, and present the design of a fixed-
posit multiplier. We evaluate the fixed-posit multiplier on error-
resilient applications of AxBench and OpenBLAS benchmarks as
well as neural networks. The proposed fixed-posit multiplier has
47%, 38.5%, 22% savings for power, area and delay respectively
when compared to posit multipliers and up to 70%, 66 %, 26 %
savings in power, area and delay respectively when compared
to 32-bit IEEE-754 multiplier. These savings are accompanied
with minimal output quality loss (1.2% average relative error)
across OpenBLAS and AxBench workloads. Further, for neural
networks like ResNet-18 on ImageNet we observe a negligible
accuracy loss (0.12%) on using the fixed-posit multiplier.

Index Terms—IEEE-754 floating point, Posit, Multipliers, Intel
Pin, Power and Error analysis

I. INTRODUCTION

OMPUTERS cannot represent all of the infinitely many

real numbers because they use a finite number of bits.
Generally, computers represent a finite set of real numbers by
creating a mapping between these numbers and the possible
bit permutations. We use the term representation to refer to
this mapping. The chosen representation impacts the entire
computing stack - from circuits which perform arithmetic, all
the way to data types in programming languages. As a result,
the choice of representation is critical to the design of efficient
software and hardware.

Today, virtually all computer systems represent real num-
bers using IEEE-754 floating point representation [2]. De-
spite its popularity, it has many shortcomings. It breaks the
mathematical laws of commutativity and associativity [9] and

*Authors contributed equally

This work is supported through grants received from SMDP-C2SD and
YFRF under Visvesvaraya PhD scheme, Ministry of Electronics and IT
(MEITY), through SERB grants CRG/2018/00501, MTR/2019/001605 at the
Indian Institute of Technology, Gandhinagar, Ashoka University startup grant
and joint-grant received from the Semiconductor Research Corporation (SRC),
through contracts 2020-IR-2980 with the Indian Institute of Technology,
Gandhinagar, and 2020-IR-3005 with Ashoka University.

V. Gohil and M. Awasthi are with Department of Computer Sci-
ence, Ashoka University, Haryana, India, 131029. (e-mail: {varun.gohil,
manu.awasthi } @ashoka.edu.in). Part of this work was done when V. Gohil
was a student at IIT Gandhinagar. S. Walia and J. Mekie are with Depart-
ment of Electrical Engineering, Indian Institute of Technology Gandhinagar,
Gujarat, India, 382355. (e-mail: {sumit.walia, joycee} @iitgn.ac.in).

© 2021 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

suffers from underflow / overflow while performing arithmetic
operations [9], [[15]]. Further, since it has a fixed number of pre-
cision bits, it suffers from rounding errors when representing
real numbers [9]]. Finally, IEEE-754 floating point reserves
multiple bit patterns to represent Not-a-Number (NaN), and
positive and negative zeros [9]]. This leads to wastage of
bit-patterns, which could have been used to represent other
numbers. Owing to these shortcomings, the hardware needs
to handle rounding, NaNs, exceptions and many other corner-
cases. Overall, this makes the design and verification of the
IEEE-754 Floating Point Unit (FPU) a time-consuming and
complex task.

The drawbacks of IEEE-754 have led to increasingly com-
plex hardware designs. This, in part has resulted in the FPU
being a major contributor to the processor’s energy and area
consumption [5]. Single precision FPU occupies 30-40% of
the die area, which increases to 50-55% for a double precision
FPU [3]. For embedded applications, floating point compu-
tations constitute 50% of core and data memory’s energy
consumption [17].

Gustafson et. al. [[10] proposed posit as a replacement
for IEEE-754 floating point. Compared to IEEE-754 floating
point, posits have larger dynamic range, higher accuracy and
follow mathematical laws of commutativity and associativity
[5], [10]. Posits do not suffer from underflow or overflow
while performing arithmetic operations [10]. Posits only have
a single Not-a-Real (NaR) exception and only a single repre-
sentation for zero, unlike IEEE-754 floating point [[10]. This
reduces the number of corner cases the hardware must handle,
thereby making hardware design simpler.

Several recent works [3], [4], [6l, [13] have used posit in
hardware accelerators for deep learning workloads. However,
adoption of posit for processors running general purpose
workloads has been a topic of debate owing to tradeoffs
involved. The configurable bit format of posit - having varying
number of regime, exponent and fraction bits, has acted as a
deterrent to it’s adoption in general-purpose processors. The
configurable bit format requires sequential bit decoding, which
adds to the critical path delay of the FPU. It further requires
hardware to support extreme configurations which worsens its
area and power consumption.

In this paper, we propose fixing the number of regime,
exponent and fraction bits of posit to overcome its shortcom-
ings. We refer to this as fixed-posit representation. The major
contributions of this work are:

o We find multiple fixed-posits having the same exponent
range as that of IEEE-754 floating point (-126 — 127),
which makes them candidates to replace IEEE-754 float-
ing point.

Sign Exponent Mantissa
‘ S ‘elezeseA ‘ L8 7 PO f

(a) IEEE-754 representation

Regime Exponent Fraction
YT ‘ f.if

Sign
‘ S ‘rrrr...r?

(b) Posit representation
Regime Exponent Fraction
eee,..... ‘ fff...f

Sign
‘ S ‘rr..r?..?

(c) Fixed-posit representation

Fig. 1: Bit Formats

« We show that configurable nature of posits leads to posit
multipliers having worse delay, area and power compared
to 32-bit [EEE-754 floating point multipliers.

o We show that fixed-posit results in more efficient multi-
pliers than posit, in terms of power, area and delay.

o We compare fixed-posit multipliers of varying bit-widths
with 32-bit IEEE-754 floating point multiplier using
OpenBLAS and AxBench benchmarks. We show that
fixed-posit multipliers can lead to up to 70%, 66%,
26% savings in power, area and delay respectively with
minimal quality loss (1.2% average relative error).

« We show the efficacy of fixed-posits on machine learning
applications. Using fixed-posits for a 3 layered fully-
connected network performing inference on MNIST leads
to 0.04% accuracy drop. We observe negligible accuracy
loss (0.12%) even for larger models like ResNet-18 on
ImageNet.

II. BACKGROUND

Figure |1al shows that the 3 parts of IEEE-754 floating point
representation: sign, exponent and mantissa. Single precision
floats have 1 sign bit, 8 exponent bits and 23 mantissa bits.
For more details we refer the reader to [2], [9].

The posit representation is represented using a 2-tuple
(N,es), where N is the total number of bits and es is the
maximum number of exponent bits. It is divided into 4 parts
- sign, regime, exponent and fraction, as shown in Figure
[Ib] The sign bit (S) is zero for non-negative numbers and
1 otherwise. The number of regime bits are variable and have
a specific encoding. The regime is sequence of 0 or 1 bits and
ends with the opposite bit. After regime, if there are at least
es bits remaining, the next es bits belong to the exponent.
If fewer than es bits are left, the bits which remain belong
to the exponent. The bits remaining after the exponent are
fraction bits. The value x represented in posit format is given
by, X = (71)5’ X (22”)]@ % gexponent (1 + Z:‘L:l fn—vzil) ,
where the value of & is decided by the length of the regime. Let
m be the number of consecutive 0’s or 1’s bits in the regime;
if regime bits are 0, then & = —m and if regime bits are 1,
then k = m — 1 [10].

III. FIXED-POSIT REPRESENTATION

The configurable bit format of posits, having varying num-
ber of regime, exponent and fraction bits, has acted as a

A ra |[ea [fa |
B |[sb] [b] [eb ||[b |
P
i g @l

) +awX

(s 2

C Usc][rc |[ec]] fc |

Fig. 2: Circuit diagram of fixed-posit multiplier

deterrent to adoption of posits over floats, for multiple reasons.
We demonstrate this by comparing 32-bit IEEE-754 with
(32,6) posit. We choose (32,6) posit for comparison since it
is optimal in terms of delay, area and power as shown in
Table We do not consider posits with es values greater
than 6, like (32,7) since these posits can have maximum 22
fraction bits thereby resulting in non-zero relative error. First,
the configurable format of posits requires sequential decoding
of the bits, unlike IEEE-754 floating point where bits are
decoded in parallel. Such sequential decoding of bits increases
critical path delay of the FPU. Table [lI] shows that critical
path delay of 32-bit IEEE-754 floating point multiplier is 61%
lower than that of (32, 6) posit.

Second, the hardware for posit needs to be designed to han-
dle extreme configurations which results in significant penal-
ties in area and power consumption. For example, for a (32,
6) posit, hardware needs to handle one extreme configuration
with 23 fraction bits as well as the other extreme configuration
with 31 regime bits. To support such configurability, the hard-
ware needs to have a 23-bit multiplier for fraction bits and 31-
bit decoder for regime bits. Table [[I] shows that such a design
for (32, 6) posit multiplier consumes 94% more power and
78% more area than 32-bit IEEE-754 floating point multiplier.
Further, it might be the case that the numbers represented by
the extreme configurations of posit lie outside the dynamic
range of IEEE-754 floating point and might not occur in any
application developed using IEEE-754 floating point [10]]. In
such cases, supporting extreme configurations would result
in inefficient utilization of hardware and unnecessarily add
overhead in hardware design process. Overall, the results
demonstrate that from a hardware design perspective, posit
is not a viable replacement for IEEE-754 floating point in
general-purpose processors.

To overcome the shortcomings of posit, we fix the number
of regime and exponent bits in the posit representation. This
allows us to implicitly fix the number of fractions bits. We
refer to such a representation as fixed-posit representation.
The regime in fixed-posits is a sequence of 0 or 1 bits
similar to posits. However, as shown in Figure if sequence
length is shorter than the fixed number of regime bits, the
remaining positions are filled with complement bits (1’s if
regime sequence has 0’s and vice-versa). One can decode a
fixed-posit by the same decoding formula used for posits. We
represent a fixed-posit with a 3-tuple (Bit-width, exponent bits,
regime bits).

Figure [2] shows the block diagram of our fixed-posit mul-

TABLE I: Fixed-posits with same exponent range as 32-bit
IEEE-754 floating-point (-126 to +127)

Fixed-Posit : (Bit-width, exponent bits, regime bits)

(32,3,16) (32,4,8) (32,5,4) (32,6,2) (32,7.1)|(24,3,16) (24,4,8) (24,5,4) (24,6,2) (24,7, 1)
(30,3,16) (30,4,8) (30,5,4) (30,6,2) (30,7,1)|(22,3,16) (22,4,8) (22,5,4) (22,6,2) (22,7,1)

TABLE III: Comparison of Area and Delay

Bitwidth (N)
in (N, 6, 2) 32 30 28 26 24 22 20 18

Relative Area | 1.09 094 0.84 072 0.63 056 039 0.34
Relative Delay | 1.04 1.00 098 093 089 0.85 080 0.74

(28,3,16) (28,4,8) (28,5,4) (28,6,2) (28,7,.1)
(26,3,16) (26,4,8) (26,5,4) (26,6,2) (26,7,1)

(20,4,8) (20,5,4) (20,6,2) (20,7,1)
(18,4,8) (18,5,4) (18,6,2) (18,7,1)

Area and Delay are relative to 32-bit IEEE-754

TABLE II: Comparison of representations (V: Variable)

Type Bit-width Exponent Regime Fraction Relative Power Area Delay
yp N) Bits Bits Bits Error (W) (mnz) (ns)
IEEE-754 32 8 - 23 0% 129.37 2923 0.54
32 <2 v v 0% 319.82 6198 0.93

32 <3 v v 0% 2949 5672 0.90

Posit 32 <4 v v 0% 284.6 5384 0.88
32 <5 v A% 0% 2614 5367 0.87

32 <6 v A% 0% 250.8 5200 0.87

32 3 16 12 2.44 x 1072% 109.83 2312 0.52

32 4 8 19 1.78 x 107%% 117.45 2834 0.56

Fixed- 32 5 4 22 1.19 x 107°% 134.97 3301 0.58
Posit 32 6 2 23 0% 132.80 3196 0.56
32 7 1 23 0% 13532 3298 0.57

tiplier. The diagram assumes that two operands A and B are
multiplied to obtain the result C. We use prefixes to indicate
various part of the fixed-posit. Prefix s refers to the sign bit, r
refers to regime, e refers to exponent and f refers to fraction.

As shown in Figure [2] we obtain the sign bit of result (sc)
by applying XOR operation on the sign bits of operands A and
B @. The decoder @ extracts the k-values of both operands
and performs left-shift by the number of exponent bits. Next,
the fraction bits of the operands (fa and fb) are multiplied
and normalized @) to obtain the fraction bits of the result (fc)
and the carry. Finally, the exponents of both operands, their
left-shifted k-values and carry are added @. The adder output
has two components - the exponent of the result (ec) and the
shifted-k value of the result. Finally, the encoder @ encodes
the shifted k-value of result to obtain the result’s regime bits
(rc). Overall, our fixed-posit multiplier design is very similar
to that of a IEEE-754 floating point multiplier. The major
difference is the existence of encoder and decoder to handle
the regime bits.

The fixed-posit multiplier has simpler implementation as
we can use shift registers in decoding regime bits, in place of
leading zero and one detector used in posit multipliers [18].
Further, for fixed-posits, we use a smaller multiplier for the
fraction bits in comparison with variable size of multiplier for
posits. This results in the fixed-posit multiplier being smaller
and faster than posit multiplier.

IV. EVALUATION OF FIXED-POSITS

To study fixed-posit as a potential replacement of IEEE-
754 floating point, we find multiple fixed-posit representations
having the same exponent range as 32-bit IEEE-754 floating
point (-126 to +127). In fixed-posits, the regime would also
contribute to the exponent range. We present the list of such
fixed-posit representations in Table [, We use this list of fixed-
posits for further experiments.

A. Comparison with Posits

We compare the multipliers of fixed-posits in Table [[] with
multiplier of posits based on their power, area and delay.
We further compute the relative error when multiplication
operands are converted from 32-bit IEEE-754 floating point

to fixed-posit/conventional posit. The relative error between
a number x in IEEE-754 and its representation x’ in fixed-
posit/conventional posit is 100 x |x — x’|/|x|.

For our experiments, we design the multipliers using Ver-
ilog. We synthesize them on 28nm FDSOI technology node at
1.2V supply voltage and at 25°C using the Synopsys Design
Compiler. We compute the total power by testing the multiplier
on 100K single precision IEEE-754 floating point numbers
generated uniformly at random within the range 27126 — 2127,

Table |lI| shows the results of our analysis for 32-bit fixed-
posit. As results show, more number of fraction bits offer more
precision thereby leading to lower errors. However, one needs
a larger multiplier for multiplying more number of fraction
bits that also results in increased power consumption. On the
other hand, fixed-posit configurations with lower number of
fraction bits have lower power consumption but higher error.

In this work, we prioritise error over other metrics and hence
select fixed-posits (32, 6, 2) and (32, 7, 1) that have the least
error. Amongst them, (32, 6, 2) is the better representation
because it’s multiplier has lower power, area and delay. The
results show that the fixed-posit (32, 6, 2) multiplier has
47% lower power, 35.6% lower delay and 38.5% area savings
compared to a (32, 6) posit, with zero relative error.

We observe a similar trend for other bit-widths as well.
However, we do not present results for all bit-widths due
to space constraints. Even for OpenBLAS and AxBench
benchmark, we observe that (N,6) posit multiplier and (N,6,2)
fixed-posit multiplier have the same output error. However,
owing to simpler design, fixed-posit multipliers have lower
power. Overall, the results show that by fixing the bit format
of posits, one can gain significant benefits in power, delay and
area consumption with minimal error.

B. Comparison with IEEE-754 Floating Point

We compare (N, 6, 2) fixed-posit multipliers with 32-bit
IEEE-754 floating point multiplier for varying values of bit-
width (N). For a fixed-posit with bit-width N, we choose (N, 6,
2) since it has lower area, power and delay among fixed-posits
having least error.

1) Workloads Used: For evaluation, we use workloads from
OpenBLAS [1]] and AxBench benchmarks [19]. OpenBLAS
benchmark consists of linear algebra workloads like matrix
multiplications and eigen value computation. We observe that
on average 50% of floating point instructions executed by
OpenBLAS workloads perform multiplication, making them
ideal for evaluation. AxBench is an approximate computing
benchmark and consists of error resilient applications like
blackscholes, fft, kmeans, jpeg encoder and sobel. Further,
we also evaluate our fixed-posit multiplier on two machine
learning workloads. Our first workload performs inference
using a three-layer fully connected network (FCN) on MNIST
[14]. Our second workload performs inference using ResNet-
18 [11] on 5000 images of ImageNet’s [§|] validation set.

TABLE IV: Accuracy drop (%) for fixed-posits on ML appli-
cations compared to single precision IEEE-754 floating point

20 22 24 26 28 30 32
003 0 0 0 0 0 0

Bitwidth (N) in (N, 6,2) | 18

FCN on MNIST 0.04
ResNet-18 on ImageNet 0.12

2) Experimental Methodology: We compare the multipliers
based on power, area and delay. We also compute the quality
loss in the final output of the program on replacing IEEE-754
multiplications with fixed-posit multiplications.

We design the fixed-posit multipliers in Verilog and synthe-
size them as per details in Section We use FloPoCo [7]
to generate the design of 32-bit IEEE-754 multiplier that we
use as our baseline. The generated design does not include
hardware for dealing with subnormal numbers. We obtain
the area and delay results by synthesizing the designs for
maximum frequency (zero slack). We also obtain a technology
dependent netlist from this synthesis.

To perform the error and power analysis, we develop a
pintool using Intel Pin [16]. Our pintool replaces all IEEE-754
multiplications in a program with fixed-posit multiplications
during the program’s execution. It does so by reading the
operands from the required registers or memory locations,
emulating the fixed-posit multiplication in software and storing
the result in the destination register. While doing so, it also
logs the trace of input operands which is used for power
analysis. We report the loss in quality metric of the workloads
by comparing the final outputs of the workload obtained on
using IEEE-754 and fixed-posit multiplications.

We divide our experiments for obtaining power into two
phases. In the first phase, we procure the trace of input
operands of multiplication for the workload using the pintool.
In the second phase we convert this trace into Switching
Activity Interchange Format (SAIF) files by passing it through
Synopsys VCS along with technology dependent netlist and a
Verilog testbench. Finally, we obtain the power using Synopsys
Design Compiler by incorporating the SAIF files at 1GHz
frequency. For few workloads, the trace of input operands is
greater than 1 GB in size, making their usage prohibitively
expensive in terms of computing resources required. Hence,
for such workloads we sample 10 chunks of 10K consecutive
multiplications, uniformly at random from all multiplications
which are executed by the workload. This way we use 100K
multiplications for further analysis.

We build the OpenBLAS and AxBench benchmarks for
x86_64 architecture using gcc 7.5.0 for nehalem target. Spec-
ifying Nehalem target prevents the compiler from using AVX
instructions which is essential since our pintool cannot replace
multiplications performed by AVX instructions. For our ex-
periments, we execute OpenBLAS workloads for input size of
200 and AxBench workloads with the test inputs provided in
the benchmark. For running the machine learning experiments
we modify the PyTorch framework to emulate fixed-posit
multiplications in software.

3) Results: Table shows the area consumption and
circuit delay of fixed-posit multiplier implementations relative
to 32-bit IEEE-754 multiplier. Both area consumption and
circuit delay are independent of the workload. As we move

from (32, 6, 2) to (18, 6, 2) fixed-posit representation, we
observe that the area occupied by the multiplier and its delay
decreases monotonically.

Figure [3| shows the total power consumption (dynamic and
leakage) of fixed-posit multipliers relative to 32-bit IEEE-
754 multiplier for all workloads of OpenBLAS and AxBench.
We observe that for all workloads the power consumption
decreases as we reduce the bit-width of our fixed-posit repre-
sentation.

Figure [shows the quality metrics of the final output of a
workload when we replace IEEE-754 floating point multiplica-
tions with (N,6,2) fixed-posit multiplications, on OpenBLAS
and AxBench respectively. For OpenBLAS workloads the out-
put quality is determined using relative error. Among AxBench
workloads, the output quality metric for blackscholes, fft and
inversek?2j is relative error, for jmeint is miss rate, and for jpeg,
sobel and kmeans is root mean squared error (RMSE). These
quality metrics are specified by the authors of AxBench.

The output quality metric degrades as we go from (32, 6,
2) to (18, 6, 2) for all workloads. For majority of workloads,
we see zero output quality loss when using (32,6,2) fixed-
posit. Hence, Figure [] shows the log of the quality loss to be
negative infinity. Overall, the results show that the (32, 6, 2)
fixed-posit multiplier is worse than 32-bit IEEE-754 floating
point multiplier. The (32, 6, 2) multiplier occupies 9% more
area and also has 4% longer delay. Further, it also consumes
6.3% more power, on average, across all workloads, when
compared to 32-bit IEEE-754 floating point multiplier. Finally,
we observe a non-zero output quality loss for few workloads
when using (32, 6, 2) fixed-posit. Hence, we only observe
negative tradeoffs when replacing 32-bit IEEE-754 floating
point with (32, 6, 2) fixed-posit.

We do start observing benefits when we reduce the bit-width
of our fixed-posit. For (30, 6, 2) fixed-posit we observe 6%
area savings and 9.7% power savings. Further, (30, 6, 2) has
same delay as IEEE-754 floating point and has an average
relative error of 1.6 x 1073% and average RMSE of 0.49. On
the other extreme, we observe that (18,6,2) fixed-posit leads to
66% area savings and 26% reduction in circuit delay. We also
observe 70.1% reduction in power. However, we encounter an
average relative error of 1.2% and RMSE of 1.02.

For image based workloads, jpeg and sobel, we also com-
pute the peak signal to noise ratio (PSNR) averaged over 37
images. For (32, 6, 2) we obtain a PSNR of 100dB for both.
For (18, 6, 2) the PSNR reduces to 45dB and 53.8dB for
jpeg and sobel respectively. However, it is higher than visually
acceptable quality threshold of 30dB used by prior work [12].

Neural networks are yet another set of error-resilient ap-
plications, and we show the use of fixed-posit for these
applications. Table [[V|shows that on running a 3-layered FCN
on MNIST with fixed-posit multiplications, there is zero drop
in accuracy as we go from (32, 6, 2) to (22, 6, 2). For
(18, 6, 2) we observe 0.04% accuracy drop. For ResNet-
18 on ImageNet, running experiments for each fixed-posit
configuration takes significantly long time since ResNet-18 has
~ 0.9 trillion multiplications. We report results for the worst
case condition, i.e. (18, 6, 2) fixed-posit as it gives the highest
quality loss for the rest of the applications. Interestingly, we

< . .
2 1.2 Bitwidth
[SE v v

v Vvl |V v
= Yyvy y'v Yvv v'v LAAALTR] v 32
= 101 Wyl THTd j 2421 244 30
=~ 0.8 Q..:l:l:' .D‘.DD.D.I‘I'.DDDD..."'" 28
e I .0-.,.. 0,., .0.'_0 o++ocoﬁ++++3 * o
£ 0.6 1 8 880 + 26
£ LT got"u's's 11182 gty - U
<
< 0.4 4 [033900 009 Q7 0q
& ggAAAAAQA‘RAAAARA AXR2244[A AL @ 22
§ 0.2 o 20
Q?0.0 rrrrrrrrrrrrrrrrrrrrrrrrrrrrornru A 18

SR S PR PO R S RO M S 5 o s o b N B B

XSRo R P FR PSR g ?:91-""3_\: BETR S

2R OBE TTRT RETE TERERRUE LR VR

<
Q0

OpenBLAS and AxBench Workloads

Fig. 3: Power Comparison on OpenBLAS (saxpby-strsv)
and AxBench (blackscholes-kmeans) workloads

observe only a 0.12% accuracy drop, from 70.38% to 70.26%,
on running ResNet-18 on ImageNet with (18, 6, 2) fixed-posit
multiplications making a case for use of fixed-posits for error-
resilient applications.

The results open up the possibility of large design space
exploration for designers in the domain of approximate com-
puting which is targeted for error-resilient applications. As
different applications have different levels of error tolerance,
the designer can trade-off quality for low power using fixed-
posit. Fixed posit also consumes lesser area compared with
posit implementation, which is an additional advantage.

V. CONCLUSION AND FUTURE WORK

In this work, we propose fixed-posit representation as a
power-efficient alternative to conventional posits. Our evalu-
ation shows that fixed-posit multipliers are area and power
efficient than posit multipliers. We show that one can obtain
significant improvements in power (up to 70%), area (up to
66%) and delay (up to 26%) by using a fixed-posit multiplier
over a 32-bit IEEE-754 floating point multiplier with minimal
relative output error (1.2% average relative error). In this work,
we only focus on multipliers. Performing similar analysis for
an entire floating point unit which includes other operations
will be crucial to conclusively observe the trade-offs of using
fixed-posits over IEEE-754 floating point.

ACKNOWLEDGMENT
We thank Dr. Farhad Merchant, RWTH Aachen University,
for initial discussion about posits and Dr. Chandan Jha, IIT
Bombay, for his help with machine learning experiments.

REFERENCES

OpenBLAS : An optimized BLAS library.

Ieee standard for floating-point arithmetic. IEEE Std 754-2008, pages
1-70, 2008.

Zachariah Carmichael, Hamed F. Langroudi, Char Khazanov, Jeffrey
Lillie, John L. Gustafson, and Dhireesha Kudithipudi. Deep Positron: A
Deep Neural Network Using the Posit Number System. In 2019 Design,
Automation Test in Europe Conference Exhibition (DATE), pages 1421—
1426, March 2019. ISSN: 1558-1101.

Zachariah Carmichael, Hamed F. Langroudi, Char Khazanov, Jeffrey
Lillie, John L. Gustafson, and Dhireesha Kudithipudi. Performance-
Efficiency Trade-off of Low-Precision Numerical Formats in Deep
Neural Networks. Proceedings of the Conference for Next Generation
Arithmetic 2019 on - CoNGA’19, pages 1-9, 2019. arXiv: 1903.10584.

[1]
[2]

[3

[t

[4

< Bitwidth
g 1 ATA
3 A [] A v 32
S 0 A AN AxeAsgt8AR o
REE IV LY IE T YVIRTT s 1941 JOr TREEIEY
B _o ’O.'Q.Oo.:.“..go .8"+8E8 [28
E T2 LoeingSeniRtnnndiutesNive .
3 -3 23243 gt i Snes a0 lEneTs
= 04498 trgaates=e®] + 26
_ o Q!-I-D e[0e@T RO Ty []
& —4 LABET ST RN R A L
< -5 DDﬁv L N B v 8 24
@0 —6 Y y. o 22
[e)
— o 20
-oo:r LAAZBE AR 2 A2 ANE 2 2220 A AR 2 2 2 2R 2 27 1
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrd A 8
PRSP HPE PN RO PNM =M > > OO NPT 00E @
SECEELSPEREH POl J e SoE bt
257G Beght gt ASEEgERE FETRE
w3 : El il
Qo g
=
=

OpenBLAS and AxBench Workloads

Fig. 4: Error Comparison on OpenBLAS (saxpby-strsv)
and AxBench (blackscholes-kmeans) workloads.

[5] Rohit Chaurasiya, John Gustafson, Rahul Shrestha, Jonathan Neudor-
fer, Sangeeth Nambiar, Kaustav Niyogi, Farhad Merchant, and Rainer
Leupers. Parameterized Posit Arithmetic Hardware Generator. In 2018
IEEE 36th International Conference on Computer Design (ICCD), pages
334-341, Orlando, FL, USA, October 2018. IEEE.

Marco Cococcioni, Emanuele Ruffaldi, and Sergio Saponara. Exploiting
Posit Arithmetic for Deep Neural Networks in Autonomous Driving
Applications. In 2018 International Conference of Electrical and
Electronic Technologies for Automotive, pages 1-6, July 2018.

Florent de Dinechin. Reflections on 10 years of FloPoCo. In 26th I[EEE
Symposium of Computer Arithmetic (ARITH-26), June 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-
Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE
conference on computer vision and pattern recognition, pages 248-255.
Ieee, 2009.

David Goldberg. What every computer scientist should know about
floating-point arithmetic. ACM Computing Surveys (CSUR), 23(1):5-
48, March 1991.

John L. Gustafson and Isaac T. Yonemoto. Beating Floating Point
at its Own Game: Posit Arithmetic. Supercomputing Frontiers and
Innovations, 4(2):71-86-86, April 2017. Number: 2.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770-778, 2016.

M. Imani, A. Sokolova, R. Garcia, A. Huang, F. Wu, B. Aksanli, and
T. Rosing. Approxlp: Approximate multiplication with linearization and
iterative error control. In 2019 56th ACM/IEEE Design Automation
Conference (DAC), pages 1-6, 2019.

Hamed F. Langroudi, Zachariah Carmichael, John L. Gustafson, and
Dhireesha Kudithipudi. PositNN Framework: Tapered Precision Deep
Learning Inference for the Edge. In 2019 IEEE Space Computing
Conference (SCC), pages 53-59, July 2019.

Yann LeCun. The mnist database of handwritten digits.
lecun. com/exdb/mnist/.

Jean Marie Linhart. Mata Matters: Overflow, Underflow and the IEEE
Floating-Point Format. The Stata Journal, 8(2):255-268, June 2008.
Publisher: SAGE Publications.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-
wood. Pin: Building customized program analysis tools with dynamic
instrumentation. In Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI °05,
page 190-200, New York, NY, USA, 2005. Association for Computing
Machinery.

Giuseppe Tagliavini, Stefan Mach, Davide Rossi, Andrea Marongiu, and
Luca Benini. A Transprecision Floating-Point Platform for Ultra-Low
Power Computing. |arXiv:1711.10374| [cs], November 2017. arXiv:
1711.10374.

Sugandha Tiwari, Neel Gala, Chester Rebeiro, and V. Kamakoti. PERI:
A Posit Enabled RISC-V Core. arXiv:1908.01466 [cs], August 2019.
arXiv: 1908.01466.

A. Yazdanbakhsh, D. Mahajan, H. Esmaeilzadeh, and P. Lotfi-Kamran.

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14] http://yann,

[15]

[16]

[17]

(18]

[19]

http://yann
http://arxiv.org/abs/1711.10374
http://arxiv.org/abs/1908.01466

Axbench: A multiplatform benchmark suite for approximate computing.
IEEE Design Test, 34(2):60-68, 2017.

	I Introduction
	II Background
	III Fixed-Posit Representation
	IV Evaluation of Fixed-Posits
	IV-A Comparison with Posits
	IV-B Comparison with IEEE-754 Floating Point
	IV-B1 Workloads Used
	IV-B2 Experimental Methodology
	IV-B3 Results

	V Conclusion and Future work
	References

