Prefetching in Hybrid Main Memory Systems

Subisha V[†], <u>Varun Gohil[†]</u>, Nisarg Ujjainkar[†], Manu Awasthi^{*}

[†]IIT Gandhinagar ^{*}Ashoka University

HotStorage 2020

Outline of the Presentation

- Background
- Insights
- Prefetcher Design
- Evaluation
- Future Work

Outline of the Presentation

- Background
- Insights
- Prefetcher Design
- Evaluation
- Future Work

DRAM Scaling Challenge

DRAM Density Scaling slowing down

Solving the DRAM Scaling Challenge, Samira Khan, ARM Research Summit 2018

DRAM Scaling Challenge

DRAM Density Scaling slowing down

Workloads require higher memory capacity

Solving the DRAM Scaling Challenge, Samira Khan, ARM Research Summit 2018

Emerging Memory Technologies

Architecting Phase Change Memory as a Scalable DRAM Alternative

Design for ReRAM-based Main-Memory Architectures

Benjamin C. Lee† Engin Ipek† Onur Mutlu‡ Doug Burger†

Meenatchi Jagasivamani Candace Walden Mehdi Asnaashari Sylvain Dubois Donald Yeung Bruce Jacob

Architecture Design with STT-RAM: Opportunities and Challenges

Ping Chi[†], Shuangchen Li[†], Yuanqing Cheng[†], Yu Lu[‡], Seung H. Kang[‡], Yuan Xie[†]

and many more ...

Emerging Memory Technologies

+ Better density

+ Energy efficient

Emerging Memory Technologies

- + Better density
- + Energy efficient
- X Longer access latencies
- X Finite write endurance

Hybrid Main Memory

Use DRAM and NVM synergistically

Hybrid Main Memory

Use DRAM and NVM synergistically

Single Address Space Variant

Hybrid Main Memory

Use DRAM and NVM synergistically

DRAM as a Cache Variant

Alloy Cache

• State of the art DRAM Cache design

Alloy Cache

- State of the art DRAM Cache design
- Acts as a direct mapped cache to NVM
- Fetches data at cacheline granularity

Alloy Cache

- State of the art DRAM Cache design
- Acts as a direct mapped cache to NVM
- Fetches data at cacheline granularity
- Cacheline size is 72B

TAG: 8B	DATA: 64B

Alloy Cache Page

• 4KB contiguous memory chunk

Alloy Cache Page

• 4KB contiguous memory chunk

Alloy Cache Page

• 4KB contiguous memory chunk

17

Outline of the Presentation

- Background
- Insights
- Prefetcher Design
- Evaluation
- Future Work

1 GB Alloy Cache, 64 GB PCM

PARSEC

Insights

GS

> one-third of cachelines accessed

All cachelines accessed

Workloads exhibit page-level spatial locality in NVM

92% of DRAM Cache pages are completely empty !

Unutilized DRAM Cache pages (Mean: 92%)

A large portion of DRAM Cache is unallocated

Outline of the Presentation

- Background
- Insights
- Prefetcher Design
- Evaluation
- Future Work

- Page-Level Spatial Locality in NVM
 - ⇒ Prefetch at page granularity

- Page-Level Spatial Locality in NVM
 - ⇒ Prefetch at page granularity

- DRAM Cache is largely unallocated
 - ⇒ Place prefetched pages in DRAM Cache

• When to prefetch?

• When to prefetch?

• Where to place prefetched data in DRAM Cache?

• When to prefetch?

• Where to place prefetched data in DRAM Cache?

• How to identify type of data at DRAM Cache location?

• When to prefetch?

• Where to place prefetched data in DRAM Cache?

• How to identify type of data at DRAM Cache location?

• How to check if data is in a prefetched page?

When to Prefetch?

When to Prefetch?

Prefetch a page if

⇒ #cacheline access ≥ Access Threshold (AT)

 \Rightarrow #unique cacheline access \geq Unique Access Threshold (UAT)

When to Prefetch?

NVM Page Classifier (NPC)

⇒ Stores cacheline access history of recently used pages

Page Number: log2NAccess Counter: log2ATCacheline Access Vector: 64Unique Access Counter: log2AT
--

N : Max number of pages that can be present in NVM

Page Number:	Access Counter:	Cacheline Access	Unique Access
log ₂ N	log₂AT	Vector: 64	Counter: log₂AT

- **N** : Max number of pages that can be present in NVM
- AT: Access Threshold

Page Number:	Access Counter:	Cacheline Access	Unique Access
log ₂ N	log₂AT	Vector: 64	Counter: log₂AT

N : Max number of pages that can be present in NVM

Page Number:	Access Counter:	Cacheline Access	Unique Access
log ₂ N	log₂AT	Vector: 64	Counter: log₂AT

N : Max number of pages that can be present in NVM

Page Number:	Access Counter:	Cacheline Access	Unique Access
log ₂ N	log₂AT	Vector: 64	Counter: log₂AT

N : Max number of pages that can be present in NVM

Page Number: log2NAccess Counter: log2ATCacheline Access Vector: 64Unique Access Counter: log2AT
--

N : Max number of pages that can be present in NVM

Where to place Prefetched Page?

Where to place Prefetched Page?

Last Unallocated DRAM Cache page

⇒ Stores the location of unallocated DRAM Cache pages

Page Number = (4096 X Level 1 index) + (64 X Level 2 index) + Level 3 index

A DRAM Cache location might be

⇒ Prefetched page

A DRAM Cache location might be

- ⇒ Prefetched page
- ⇒ Alloy Cache Page

A DRAM Cache location might be

- ⇒ Prefetched page
- ⇒ Alloy Cache Page
- ⇒ Empty

A DRAM Cache location might be

- ⇒ Prefetched page
- ⇒ Alloy Cache Page
- ⇒ Empty

Need to distinguish them to ensure correctness

State 0: Empty Location

State 1: Clean Prefetched Page

State 2: Alloy Cache Page

State 0: Empty Location

State 1: Clean Prefetched Page

State 2: Alloy Cache Page

State 0: Empty Location

State 1: Clean Prefetched Page

State 2: Alloy Cache Page

State 0: Empty Location

State 1: Clean Prefetched Page

State 2: Alloy Cache Page

State 0: Empty Location

State 1: Clean Prefetched Page

State 2: Alloy Cache Page

Type Classifier (TC)

⇒ Stores the state of the DRAM Cache location

Type Classifier Entry

Type: 2	Cacheline Usage Vector: 56

Type Classifier Entry

Type Classifier Entry

Туре: 2	Cacheline Usage Vector: 56

Checking if data is in a prefetched page

67

Checking if data is in a prefetched page

Page Redirection Table (PRT)

⇒ Hash Table storing tags of prefetched data

Tag: Variable	Mapped Page Number : log ₂ D	Valid : 1

D : Max number of pages that can be present

Tag: Variable	Mapped Page Number : log ₂ D	Valid : 1
---------------	---	-----------

D : Max number of pages that can be present

Tag: Variable	Mapped Page Number : log ₂ D	Valid : 1
---------------	---	-----------

D : Max number of pages that can be present

Tag: Variable	Mapped Page Number : log ₂ D	Valid : 1
---------------	---	-----------

D : Max number of pages that can be present
Outline of the Presentation

- Background
- Insights
- Prefetcher Design
- Evaluation
- Future Work

ZSim + NVMain

- ⇒ 1 GB Alloy Cache, 64 GB Phase Change Memory
- \Rightarrow 8 core, 2.6 GHz processor
- ⇒ Use CACTI for access latency of structures
- ⇒ PARSEC benchmark

Sequential access behavior

1.5×-4× improvement

7× speedup

16-40% higher IPC

Outline of the Presentation

- Background
- Insights
- Prefetcher Design
- Evaluation
- Future Work

Future Work

Evaluate our prefetcher on

- ⇒ Memory-intensive SPEC workloads
- ⇒ Graph workloads having irregular memory access patterns
- ⇒ Compare with similar recent works

Key Takeaways

- Prefetch at page granularity to exploit page-level spatial locality.
- Place prefetched page in DRAM Cache to improve its utilization
- We observe 16-40% increase in IPC on PARSEC.

Link to Paper:

Contact Us: gohil.varun@iitgn.ac.in manu.awasthi@ashoka.edu.in