
Prefetching in Hybrid Main Memory Systems

Subisha V Varun Gohil Nisarg Ujjainkar
Indian Institute of Technology Gandhinagar

Manu Awasthi
Ashoka University

Abstract
The architecture of main memory has experienced a

paradigm shift in recent years, with non volatile memory tech-
nologies (NVM) like Phase Change Memory (PCM) being
incorporated into the hierarchy at the same level as DRAM.
This transformation is being carried out by either splitting the
memory address across two or more memory technologies, or
using a faster technology with higher lifetimes, typically the
DRAM, as a cache for the higher capacity, albeit slower main
memory made up of a NVM.

Design of such hybrid architectures remains an active area
of research from the perspective of DRAM-as-a-cache design,
since DRAM could quickly become the bottleneck, as cache
lookups require multiple accesses for reading tag and data.
In this paper, we augment the DRAM-as-a-cache model with
a novel DRAM cache prefetcher that builds on state of the
art Alloy Cache. The new DRAM cache architecture allows
for prefetching data at both cacheline and page granularities
from the NVM, and as a result, provides upto a maximum of
2× performance improvement over a state of the art baseline.

1 Introduction

In recent years, there has been an increasing demand from
applications for increased memory capacity. However, DRAM
stands at the edge of its scaling capabilities and it is unclear
if it can be scaled beyond 10 (or so) nano meters [1].

Emerging, non-volatile memory (NVM) technologies like
PCM, STT-RAM etc. are touted to provide high capacity
alternatives to DRAM as main memory technologies. The
capacity benefits of all such technologies are apparent; most
technologies have higher areal density [5, 7] than DRAM.
However, simply replacing DRAM with a NVM causes addi-
tional challenges. Owing to the increased access latencies of
these technologies, the average memory access time (AMAT)
increases significantly, resulting in unacceptable slowdown
in application performance [5]. Naive replacement of DRAM
with any other NVM can lead to significant degradation in

performance of memory intensive applications [5]. Not only
that, for a main memory comprised entirely of a NVM, a
number of other issues like wear leveling and reducing the
detrimental performance effects caused by asymmetric read
and write latencies need to be addressed. As a result, un-
less any of these emerging technologies are able to achieve
DRAM-compatible latencies, they will have to be used in
conjunction with DRAM as main memories.

In the absence of simple solutions, architects have devised
hybrid memory hierarchies, utilizing both DRAM and NVMs,
in order to provide the best of both worlds by providing low-
latency data access via DRAM, and higher capacity via NVM.
The two most popular hybrid architectures are split-address
space [2] and DRAM-as-a-cache [6, 9]. In the split-address
space variant, the physical address space is divided, in some
proportion, across DRAM and NVM. The system software,
typically the operating system, has to explicitly perform data
placement between the two disparate memory technologies.
However, this requires changes at multiple levels. Multiple
types of memory controllers, each pertaining to a memory
technology, have to be incorporated onto the CPU. The system
software also has to be changed substantially [12].

To make the adoption of hybrid memory hierarchies less in-
trusive, an alternate architecture which uses DRAM as a cache
to the NVM comprised of main memory was proposed [6]. In
this design, hardware seamlessly manages data between the
DRAM and NVM. The AMAT experienced by the application
is closer to that of DRAM, but visible memory capacity is
that of NVM.

Multiple architectures for DRAM-as-a-cache have been
proposed [8]. Since a cache requires storage of both tag and
data, overall access latency could increase if accesses to both
are serialized. This becomes especially problematic in the
case of DRAM caches, since serializing these accesses re-
quires multiple round trips to DRAM, increasing overall ac-
cess time, reducing effectiveness of the cache. Architectures
like Alloy Cache [9] have been proposed to alleviate these
shortcomings of DRAM caches. Alloy Cache allows for re-
duction of average latency to access DRAM cache by storing

bl
ac

ks
ch

ol
es

bod
yt

ra
ck

fa
ce

si
m

fe
rr

et

flui
da

ni
m

at
e

fr
eq

m
in

e

ra
yt

ra
ce

sw
ap

ti
on

s
vi

ps

x2
64

ca
nn

ea
l

st
re

am
cl
us

te
r

de
du

p

0

20

40

60

80

100

P
er

ce
n
ta

g
e

o
f

P
a
g
es

> one-third of cachelines accessed

All cachelines accessed

Figure 1: Cacheline accesses of NVM pages

and retrieving tag (8 bytes) and data (64 bytes) together and
serving it in a single burst.

We posit that one can further improve the AMAT by in-
telligently prefetching data from NVM to DRAM Cache. To
the best of our knowledge, there exists no work for designing
prefetchers for DRAM caches. If If prefetchers for DRAM
caches are to be designed, we need to address some basic
questions regarding those. For example, what should be the
granularity of prefetch? Where should the prefetched data
be placed? We try to answer some of these questions in this
paper.

To gain insights into the workload behavior under DRAM
Cache based hybrid memories, and their suitability for
prefetchers, we conduct multiple experiments. First, we an-
alyze per-page cacheline access characteristics of different
applications 1. Assuming a 64 B cacheline and 4 KB pages,
each page contains 64 cachelines. Figure 1 shows that on
average, every cacheline of 73% of the pages is accessed dur-
ing program’s execution. In addition, 84% of the pages have
at least a third of their cachelines accessed. These experi-
ments provide support for the presence of spatial locality in
the workloads under consideration, and the fact that fetching
data into the DRAM cache at larger than cacheline granularity
will be helpful for application performance.

However, fetching at larger granularities can lead to cache
pollution. In order to assess such detrimental effects, we
tracked space allocation in Alloy Cache, the results of which
are presented in Figure 2. We observe that large amount of
DRAM cache capacity remains unutilized - across all work-
loads, 92% of all DRAM cache pages are unallocated.

These results provide us two insights. First, data in DRAM
cache should be managed at multiple granularities, both large
and small. Second, managing data at cacheline granularity
only leads to under-utilization of DRAM Cache capacity. We
combine these two insights to design a novel prefetcher that
fetches data at page granularity into regions of DRAM cache
that are not utilized by the Alloy Cache.

1Section 3 describes our experimental methodology.

bl
ac

ks
ch

ol
es

bod
yt

ra
ck

fa
ce

si
m

fe
rr

et

flui
da

ni
m

at
e

fr
eq

m
in

e

ra
yt

ra
ce

sw
ap

ti
on

s
vi

ps

x2
64

ca
nn

ea
l

st
re

am
cl
us

te
r

de
du

p

0

20

40

60

80

100

P
er

ce
n
ta

g
e

o
f

P
a
g
es

Unutilized DRAM Cache pages (Mean: 92%)

Figure 2: Page Utilization in DRAM Cache

2 Prefetcher Design
In the baseline Alloy Cache design, all pages in DRAM are
used for storing cachelines, brought from NVM due to de-
mand misses. Each such cacheline maps to a unique DRAM
page, and each such page might contain cachelines from mul-
tiple physical pages in NVM.

However, as described before, many physical pages in
NVM exhibit significant spatial locality, and the application
will benefit if the entire page, and hence all its cachelines,
were prefetched into the DRAM. If this was enabled, the
DRAM Cache will now have two kinds of pages:

Alloy Cache Page: These are the DRAM Cache pages
that consist of Alloy Cachelines. Alloy Cachelines have data
(64B) and tag (8 B) integrated together as a single unit (72 B).
Hence, one 4KB Alloy Cache page can accommodate 56
cachelines.

Prefetched Page: These pages are prefetched from NVM
to the DRAM Cache. Tags for cachelines in these pages are
saved separately in the prefetcher component, which is de-
scribed later in Section 2.4. A 4 KB Prefetched Page can
accommodate 64 cachelines.

Prefetching physical pages from NVM into DRAM, while
keeping the baseline design of Alloy Cache requires us to pro-
vide additional functionality to various memory controllers
in the hybrid memory architecture, which are described next.

We add the NVM Page Classifier (NPC) to NVM’s memory
controller that decides if a page should be prefetched. It does
so by maintaining the access history for cachelines in recently
accessed pages, and prefetching pages with most potential
future accesses. To improve DRAM utilization, we allocate
prefetched pages to currently unallocated regions in DRAM
Cache. This requires augmenting the DRAM Cache’s mem-
ory controller with an additional structure called the Empty
Page Classifier (EPC). EPC keeps track of empty, or currently
unoccupied, pages. Another structure, called the Type Clas-
sifier (TC) is maintained to distinguish accesses to different
types (Alloy Cache vs. Prefetched) of pages. We also include
a Page Redirection Table (PRT) in DRAM Cache’s memory
controller. It maintains a mapping of prefetched pages to their
corresponding locations in DRAM Cache.

Figure 3 illustrates the high level architecture of the pro-
posed prefetcher and new components that are added to the

Figure 3: Proposed structures in Memory Controllers

Figure 4: State transition diagram of Type Classifier

memory controllers. The structures we introduce are orthog-
onal to those of Alloy Cache which allows our prefetcher to
work with any other DRAM Cache design.

2.1 NVM Page Classifier (NPC)

The NVM Page Classifier keeps track of the access history of
recently accessed NVM pages, which is used to identify pages
suitable for prefetching. Ideally, we should prefetch a page
with high number of accesses and with accesses to a number
of unique cachelines. To identify such pages, we keep track of
the number of cachelines touched in individual NVM pages.
An NVM page is deemed a candidate for prefetch when the
number of accesses to the page crosses an Access Threshold
(AT), and the number of accesses to unique cachelines crosses
Unique Access Threshold (UAT). Here, AT ≥ UAT.

Figure 5a illustrates the composition of a single NPC en-
try. Considering there are N total NVM pages, each NPC
entry has log2N bits to identify the page number. An Access
Counter keeps track of the number of accesses to this page.
We provide a log2AT bit saturating counter to keep track of
Access Threshold. A 64 bit Cache Access Vector (CAV), with
one bit for each cacheline in the page, is also provided. A set
bit in CAV indicates that the cacheline corresponding to the
bit has been accessed. Finally, we provide a log2AT bit satu-
rating counter for keeping track of unique cachelines accessed.
Whenever an NVM page is accessed, the access counter is
incremented. The corresponding bit in the CAV is checked.
If the bit is 0, it is set and the UAT is incremented. The NPC
will contain multiple such entries. For every request a fully-
associative search is performed on the NPC whose entries are
evicted using LRU.

(a) NVM Page Classifier

(b) Type Classifier

(c) Page Redirection Table

Figure 5: Entries of Prefetcher components. Values are the
number of bits required

2.2 Type Classifier (TC)

As we prefetch pages directly to DRAM Cache, it now houses
two types of pages: Alloy Cache Page and Prefetched Page.
To use the system without errors, we need to identify the type
of page that exists at a DRAM Cache location. The Type
Classifier identifies whether a DRAM Cache location houses
an Alloy Cache page or a Prefetched page. It also maintains
the the occupancy details of all the cachelines in the Alloy
Cache page. Figure 5b represents an entry in the TC table.
Each TC entry has 2 bits to identify the type of page stored
at the location. Using 2 bits, we can represent the following
four states:
State 0 : 00← Empty/Un-allocated Location
State 1 : 01← Valid Prefetched Page at Location
State 2 : 10← Valid Alloy Cache Page at Location
State 3 : 11← Dirty Prefetched Page at Location
When a page is prefetched from NVM to DRAM, the page is
in state 1. When we write to a page in state 1, it transitions
to state 3, indicating that the page is dirty. All Alloy Cache
pages are in state 2, irrespective of cachelines being dirty.
The dirtiness of an Alloy Cacheline is indicated by the tag
stored along with the data. Figure 4 illustrates the transitions
between all four states.

Each TC entry contains a Cacheline Usage Vector (CUV),
having one bit for each cacheline. These bits are valid only if
the Type bits indicate State 2 (Alloy Cache page at location).
A 4KB Alloy Cache page has 56 cachelines, implying a 56
bit CUV. A set bit signifies that the corresponding cacheline
is occupied. An entry in Type Classifier is maintained for all
locations in the DRAM Cache.

2.3 Empty Page Classifier (EPC)

The Empty Page Classifier keeps track of empty pages in
DRAM Cache. The EPC is used to identify an empty page in
DRAM Cache and place a prefetched page at that location,
improving DRAM Cache utilization.

Figure 6 represents the organization of the multi-level

Figure 6: Structure of Empty Page Classifier

EPC table. For implementing the EPC, we group consecutive
DRAM pages in groups of 64, each represented by a 64 bit
vector. The 64 bit vectors for all groups together form the last
Level L of the EPC table. A set bit in this vector indicates
that the corresponding page is empty. We further group these
vectors in groups of 64, leading to a 64 bit vector in Level
(L−1) of the EPC table. We recursively keep grouping the
bit vectors in groups of 64 or less, till we have a single vec-
tor left i.e. we reach Level 1 of the EPC table. A set bit in
the bit vectors from Level 1 to (L− 1) indicates that there
exists at least one set bit in the corresponding bit vector in the
next level. Such a multi-level design improves the worst-case
lookup latency when compared to a single level design.

The EPC is updated when a DRAM Cache page becomes
empty or is occupied. This is done by first updating the last
level and then progressing towards upper levels, updating the
structure at each step. We perform a lookup on EPC for the
last empty page by finding the last set bit in the first level of
EPC and recursively traversing through the lower levels till
we reach a page. For implementing this, we use the hardware
find-first-set (ffs) function, which finds the index of the first
set bit starting from the least-significant bit.

2.4 Page Redirection Table (PRT)
The Page Redirection Table maintains a mapping of
prefetched pages to their locations in DRAM Cache, and has
a functionality similar to that of a page table. Every miss in
the last level cache first accesses the PRT to identify whether
the requested address exists as a cacheline in a prefetched
page.

The PRT is a hash-table. We empirically find the optimal
size and associativity for the PRT which minimizes collisions
and improves look-up time. Figure 5c depicts an entry in
PRT. Each PRT entry stores the tag of the cacheline to verify
that the the cacheline in the prefetched page is indeed the
requested cacheline. The number of tag bits depend of the

number of offset bits, index bits and data bits in the address.
To specify the location in DRAM Cache where the page is
mapped to, we have log2D bits in each PRT entry. We also
have a valid bit which when set indicates that the mapping is
valid. A PRT entry is invalidated when an Alloy Cacheline is
brought to the location which is occupied by a prefetched page
due to some request. As demand fetches have higher priority
than prefetches, we evict prefetched page and invalidate the
PRT entry. We use LRU policy for evicting entries from PRT.

2.5 Memory Request Service Routines
Algorithm 1 and 2 provide the service routines for write and
read requests, respectively. Next, we cover the salient points
of the read/write routines, including some interesting cases.

Given our design, there is a chance that a requested cache-
line might be present at two locations in the DRAM: as a
part of a Prefetched Page, which contains all the cachelines
for the page. Or, it can be present in an Alloy Cache page,
which might contain multiple other cachelines. The case for
writing data when it is present in either of the two locations is
easy. However, care has to be taken to ensure data consistency
when a cacheline is present at multiple locations.

To ascertain the cacheline’s presence, we first read the PRT
and TC in parallel. A PRT hit indicates that the cacheline
is present in a Prefetched Page. If there is a hit in the Alloy
Cache as well, it indicates that the cacheline is also present as
an Alloy Cacheline.

When requested cacheline is present in both, a prefetched
page and an Alloy Cacheline, the read request is serviced from
the Alloy Cacheline. In parallel, if the cacheline is dirty, the
data is written to the corresponding region in the Prefetched
Page and the cacheline is invalidated. In the case of a write
request, the data is written to the cacheline in the Prefetched
Page. If the Alloy Cacheline was dirty, the Prefetched Page
is updated with the dirty cacheline before the current write is
carried out. The Alloy Cacheline is also invalidated.

In cases of read requests where the requested cacheline is
present in a Prefetched Page, and the corresponding Alloy
Cache page doesn’t have the requested cacheline, the data is
returned from the Prefetched Page. The writes are also done
at the corresponding location in the Prefetched Page.

Finally, there can be write cases where the cacheline needs
to be written into the DRAM Cache, and is not present in any
Prefetched Page. If the cacheline is present at its (fixed) loca-
tion as an Alloy Cacheline, it is written in place. In case this
location is currently being occupied by a Prefetched Page, the
page will be evicted, and it’s contents written back to NVM,
if any cachelines are dirty. The location is now marked as an
Alloy Cache page, and the write to the cacheline completes.

In cases where data is not present in either in a Prefetched
Page, or as a part of a Alloy Cache page, the request for data
is sent to the NVM. The data is then brought in at cacheline
granularity, unless the criteria for prefetching the page are

Algorithm 1: Write Request Service Routine
input :Address and Data
if PRT hits for Address then

if TC is 2 then
if Cacheline hits then

Invalidate Cacheline
end

end
Write Data to prefetched page

else
if TC is 1 then

Evict prefetched page at DRAM Cache location
end
if TC is 3 then

Evict prefetched page at DRAM Cache location and write evicted
page to the NVM.

end
if TC is 2 then

if Cacheline does not hit then
Evict the Cacheline at the DRAM Cache location.

end
end
write Data to Cacheline at DRAM Cache location.

end

fulfilled by this request.

3 Experimental Setup

We use ZSIM [10] and NVMain [4] for simulating hybrid
main memory hierarchy with 1 GB 8-channel DRAM Cache
and 16 GB Phase Change Memory (PCM). We chose PCM as
a representative NVM technology, but the same set of experi-
ments can be repeated by changing the NVMain parameters
to match those of the memory technology that should be mod-
eled. We modify the source code to incorporate our proposed
prefetcher. We simulate an 8 core, 2.6 GHz processor with
private L1 instruction, L1 data and L2 caches for each core.
The L3 cache is shared across all cores. Table 1 shows the
cache hierarchy and main memory configuration used for
our experiments. We assume a 4 KB page size for a total of
4,194,304 pages in the NVM and 2,62,144 pages in DRAM
Cache. As a result, we need 22 bits to represent NVM page
number and 18 bits to represent DRAM Cache page number.

We observe that 82% of pages with accesses to at least one-
third of their cachelines, have all their cachelines accessed
(Figure 1). Hence, we set AT to 22 (≈ 64/3). We empirically
determine that it is best to set UAT as two-thirds of AT. Hence
we set UAT to 15 (≈ AT*2/3). Each NPC entry is 12 bytes
with 22 pagenumber bits, 5 bits each for Access Counter and
Unique Access Counter, and 64 bits for Cacheline Access
Vector. Further, we find that the optimal size of NPC is 16
entries, bringing the total NPC size to 192 bytes. We assume
a 1 clock cycle overhead for accessing the NPC.

To cover all pages in the DRAM Cache we require a 2MB
storage space for the TC table, shown in Figure 5b . Using
CACTI [11], the access latency of TC table is estimated to be
4 clock cycles.

From design space exploration, we find that it is best to
have a 4 way set associative table with 1024 sets for the PRT.

Algorithm 2: Read Request Service Routine
input :Address to be read
if PRT hit occours for Address then

if TC is 0 or 1 or 3 then
return data from prefetched page

else
if Cacheline hits and Cacheline is dirty then

Write DRAM Cacheline to prefetched page.
Invalidate the DRAM Cacheline.

end
return data from prefetched page

end
else

if TC is 0 then
Send read request to NVM

else if TC is 1 then
Evict prefetched page at DRAM Cache location
Send read request to NVM

else if TC is 2 then
if Cacheline hits then

return data from DRAM Cacheline
else

Evict cacheline at DRAM Cache location.
If evicted cacheline is dirty and belongs to a prefetched

page, write the evicted cacheline to that prefetched page.
Send read request to NVM

end
else

Evict prefetched page at DRAM Cache location and write evicted
page to the NVM.

Send read request to NVM
end

end

Table 1: Experimental Configuration
Cache Hierarchy Configuration

Size (KB) Latency (Cycles)
L1 Insn 32 4
L1 Data 32 4

L2/L3 Unified 256/4096 8/16
All caches are 8 way set associative

Main Memory Configuration
DRAM Cache PCM

Frequency (MHz) 1600 400
tRCD/tCCD (cycles) 23/4 312/13
tCAS/tRP (cycles) 23/23 7/390

This table is 20KBs, with a single entry of 5 bytes. While
accessing the PRT, we use 10 bits (Bits 22-13) to index into
the set and last 12 bits for offset. For our configuration, each
PRT entry has 21 tag bits, 18 bits for DRAM Cache page
number and 1 valid bit. We determine the access latency of
PRT to be 2 clock cycles using CACTI [11].

We implement the EPC on a per-channel basis. Our con-
figuration, has 32,768 pages per channel, leading to a 3 level
EPC table described in Section 2.3. EPC’s Level 3 has 512
64-bit vectors, Level 2 of EPC has 8 64-bit vectors and Level
1 is a 8-bit vector. Overall, the EPC is approximately 33 KBs
and has a 3 cycle latency, as per CACTI [11].

4 Results
We evaluate the prefetcher on the PARSEC [3] benchmarks
with simlarge input set, for 2 cases - one being single-program
workloads in which we run a single thread of each application
for 5 billion instructions. The other is for multi-programed
workloads where two instances of a single threaded applica-

(a) DRAM Cache hitrate relative to Alloy Cache

(b) Avg. memory latency relative to Alloy Cache

(c) Speedup relative to Alloy Cache

Figure 7: Results for Single-Program workloads

tion are simultaneously executed for both 5 and 10 billion
instructions.

Figure 7a shows the cache hit rate improvement for single-
program workloads. We observe a 1.5-4× improvement in
DRAM Cache hit rate across all PARSEC workloads. Stream-
cluster experiences a 12× improvement in cache hit rate. We
believe that this is due to streamcluster’s memory intensive be-
havior – no other application in the PARSEC suite generates
more than 50% of streamcluster’s DRAM Cache requests.

The improvement in cache hit rate also translates to low-
ered AMAT, shown in Figure 7b. Average memory access
time for streamcluster reduces by 80%. For other applications
we observe a 10-30% decrease in average memory latency.
However, for bodytrack and fluidanimate, average memory
access latency increases slightly despite increase in DRAM
Cache hit-rate. We believe that this is due to the overheads
introduced by prefetcher components and the lack of memory
level parallelism of these applications.

Further, Figure 7c depicts the speedup of the prefetcher
working in conjunction with Alloy Cache over the baseline
Alloy Cache design. We use the ratio of instructions-per-cycle
(IPC) as a measure of speedup. For streamcluster we observe
a 7× speedup, while for fluidanimate and vips we do not see
any performance impact. The rest of the applications observe
16-40% improvements in IPC.

Figure 8 shows the results for multi-program workloads.
Results are obtained by concurrently running 2 single-

(a) DRAM Cache hitrate relative to Alloy Cache

(b) Avg. memory latency relative to Alloy Cache

(c) Speedup relative to Alloy Cache

Figure 8: Results for Multi-Program workloads

threaded instances of the same program. Two types of runs
were done, one for 5 billion instructions, and the other for 10
billion. We observe a 2× increase in DRAM Cache hit rate, on
average, across all workloads except streamcluster, for both
5 and 10 billion instructions. For streamcluster we observe a
16× improvement in the hit rate. Streamcluster, owing to a
50% reduction in AMAT, experiences a 2× speedup over the
baseline Alloy Cache. The rest of the workloads experience a
10-40% reduction in AMAT.
5 Conclusion
In this paper, we provide the design and initial set of results
for a novel prefetcher for the DRAM Cache in hybrid memory
architectures. The prefetcher brings data at the granularity of
pages from NVM in conjunction with Alloy Cache, which
performs demand fetching at cacheline granularity. We show
that it is possible to co-locate cached data with both cacheline
and page granularities by augmenting the DRAM memory
controller with a few low-latency and low overhead structures.
Finally, we demonstrate that the novel prefetcher design has
the potential to outperform the state of the art Alloy Cache
baseline by up to 2× for memory intensive workloads.

Acknowledgements
We thank Biswabandan Panda, IIT Kanpur for initial discus-
sions and our shepherd Deepavali Bhagwat, IBM Research
for her help in improving the manuscript.

References

[1] DRAM Scaling Challenges Grow.
https://semiengineering.com/
dram-scaling-challenges-grow/. Accessed:
21-03-2020.

[2] Frank Bellosa. When physical is not real enough. In
Proceedings of the 11th Workshop on ACM SIGOPS
European Workshop, EW 11, page 25–es, New York,
NY, USA, 2004. Association for Computing Machinery.

[3] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh,
and Kai Li. The parsec benchmark suite: Characteriza-
tion and architectural implications. In Proceedings of
the 17th international conference on Parallel architec-
tures and compilation techniques, pages 72–81, 2008.

[4] Asif Ali Khan, Fazal Hameed, and Jeronimo Castrillon.
Nvmain extension for multi-level cache systems. In
Proceedings of the Rapido’18 Workshop on Rapid Simu-
lation and Performance Evaluation: Methods and Tools,
pages 1–6, 2018.

[5] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug
Burger. Architecting phase change memory as a scalable
dram alternative. In Proceedings of the 36th Annual In-
ternational Symposium on Computer Architecture, ISCA
’09, page 2–13, New York, NY, USA, 2009. Association
for Computing Machinery.

[6] Gabriel H. Loh and Mark D. Hill. Efficiently enabling
conventional block sizes for very large die-stacked
dram caches. In Proceedings of the 44th Annual

IEEE/ACM International Symposium on Microarchitec-
ture, MICRO-44, page 454–464, New York, NY, USA,
2011. Association for Computing Machinery.

[7] Darsen Lu. Tutorial on emerging memory de-
vices. Available at people. oregonstate. edu/˜
sllu/Micro_MT/presentations/micro16_emerging_
mem_tutorial_darsen. pdf, 2016.

[8] Sparsh Mittal and Jeffrey S Vetter. A survey of tech-
niques for architecting dram caches. IEEE Transactions
on Parallel and Distributed Systems, 27(6):1852–1863,
2015.

[9] Moin Qureshi and Gabriel H Loh. Fundamental latency
trade-offs in architecturing dram caches: Outperforming
impractical sram-tags with a simple and practical design.
In Proc. of the 45th Intl. Symp. on Microarchitecture,
Vancouver, Canada, volume 10, 2012.

[10] Daniel Sanchez and Christos Kozyrakis. Zsim: Fast and
accurate microarchitectural simulation of thousand-core
systems. ACM SIGARCH Computer architecture news,
41(3):475–486, 2013.

[11] Shyamkumar Thoziyoor, N Muralimanohar, J Ahn, and
N Jouppi. Cacti 6.5. hpl. hp. com, 2009.

[12] Zi Yan, Ján Veselý, Guilherme Cox, and Abhishek Bhat-
tacharjee. Hardware translation coherence for virtual-
ized systems. In Proceedings of the 44th Annual Interna-
tional Symposium on Computer Architecture, ISCA ’17,
page 430–443, New York, NY, USA, 2017. Association
for Computing Machinery.

https://semiengineering.com/dram-scaling-challenges-grow/
https://semiengineering.com/dram-scaling-challenges-grow/

	Introduction
	Prefetcher Design
	NVM Page Classifier (NPC)
	Type Classifier (TC)
	Empty Page Classifier (EPC)
	Page Redirection Table (PRT)
	Memory Request Service Routines

	Experimental Setup
	Results
	Conclusion

